Abstract:
A bottom-emitting substrate, a display device and a method for manufacturing the bottom emitting substrate are provided. The bottom-emitting substrate comprises: a base substrate (1); a black matrix layer (2) with a plurality of opening regions and a plurality of non-opening regions disposed on the base substrate (1); and an array substrate unit disposed on the black matrix layer (2), projections of metal layers in the array substrate unit on the black matrix layer (2) locating within the plurality of non-opening regions of the black matrix layer (2). A method for manufacturing the bottom-emitting substrate and a display device comprising the bottom-emitting substrate are also provided.
Abstract:
The present disclosure provides a light emitting device, a production method thereof, and a display panel, for simplifying the production process of light emitting device and improving the performance of the light emitting device. The light emitting device in the present disclosure comprises a white light emitting layer comprising a polyfluorene blue light material, and red light quantum dots and green light quantum dots doped in the polyfluorene blue light material.
Abstract:
A white light quantum dot complex particle, comprising a seed particle (1) in the core, and a first shell layer (2), a second shell layer (3) and a third shell layer (4) wrapped around the seed particle (1) in order; in the first shell layer (2), the second shell layer (3) and the third shell layer (4) are one of a red light quantum dot layer, a green light quantum dot layer and a blue light quantum dot layer respectively, and are different from one another. Also disclosed is the process for preparing the white light quantum dot complex particle.
Abstract:
A double-sided display apparatus and a method of manufacturing the same are provided. The double-sided display apparatus includes a first substrate and a second substrate arranged opposite to each other; a first transparent electrode and a second reflective electrode arranged on the first substrate; a first reflective electrode opposed to the first transparent electrode on the first substrate and a second transparent electrode opposed to the second reflective electrode on the first substrate arranged on the second substrate; and a quantum light-emitting layer arranged between the respectively corresponded transparent electrodes and reflective electrodes, the quantum light-emitting layer including charge transport particles and QD light-emitting material mixed therein. The provided double-sided display apparatus is lighter, thinner, more portable, and of low cost.
Abstract:
A white light quantum dot complex particle, comprising a seed particle (1) in the core, and a first shell layer (2), a second shell layer (3) and a third shell layer (4) wrapped around the seed particle (1) in order; in the first shell layer (2), the second shell layer (3) and the third shell layer (4) are one of a red light quantum dot layer, a green light quantum dot layer and a blue light quantum dot layer respectively, and are different from one another. Also disclosed is the process for preparing the white light quantum dot complex particle.
Abstract:
Embodiments of the invention relate to a composite film and a fabrication method thereof, a photoelectric element and a photoelectric apparatus. The fabrication method of the composite film includes: preparing a polyfluorene-based compound solution, wherein the polyfluorene-based compound solution includes polyfluorene or polyfluorene derivatives; preparing a quantum dot solution; mixing the polyfluorene-based compound solution and the quantum dot solution together to prepare a mixed solution; removing a solvent in the mixed solution to prepare the composite film.
Abstract:
The invention refers to quantum dots (QDs) composite particles and their preparation method, photoelectric elements and photoelectric equipment. The preparation method of QDs composite particles comprises: coating the surface of metal nanoparticles (MNPs) with silica; modifying the silica coated MNPs through amination to make the surface of the silica have amino functional groups; and combining the carboxyl-functionalized QDs with amino-functionalized silica coated MNPs, thereby preparing the QDs composite particles. The preparation method can enhance the fluorescent efficiency of QDs.
Abstract:
The present disclosure provides a photosensitive resin composition and a method for forming a quantum dot pattern using the same. The photosensitive resin composition includes quantum dots which are dispersed in the photosensitive resin composition and each has a modification layer. The method for forming a quantum dot pattern includes coating, exposing and developing a photoresist to obtain the quantum dot pattern, wherein the photoresist is the above-mentioned photosensitive resin composition.
Abstract:
A bottom-emitting substrate, a display device and a method for manufacturing the bottom emitting substrate are provided. The bottom-emitting substrate comprises: a base substrate (1); a black matrix layer (2) with a plurality of opening regions and a plurality of non-opening regions disposed on the base substrate (1); and an array substrate unit disposed on the black matrix layer (2), projections of metal layers in the array substrate unit on the black matrix layer (2) locating within the plurality of non-opening regions of the black matrix layer (2). A method for manufacturing the bottom-emitting substrate and a display device comprising the bottom-emitting substrate are also provided.
Abstract:
The present application discloses a liquid crystal display device and a backlight module thereof. The backlight module comprises a backboard, a separating plate, and a light source component; wherein the backboard has a base plate and a plurality of side plates, and the backboard is an injection moulding board; the separating plate is mounted in an accommodating groove, a heat dissipation chamber is formed between the separating plate and the base plate, in the heat dissipation chamber, the backboard is provided with convection holes; the light source component comprises a plurality of lamp substrates and a plurality of LED lamps mounted on the lamp substrates, the lamp substrates are located within the heat dissipation chamber, and the separating plate is provided with transparent holes enabling light emitted by each of the LED lamps to penetrate the separating plate in a thickness direction of the separating plate.