Abstract:
An optical device comprises: an optical structure including a first set of prisms and a second set of prisms which engage with each other, the second set of prisms are formed from electro-optical effect material or provided with electro-optical effect material, when no electric field is applied to the second set of prisms, the first set and the second set of prisms have the same refractivity; at least one pair of electrodes being provided at two sides of the second set of prisms respectively, for generating an electric field therebetween so as to change the refractivity of the second set of prisms in the direction of the electric field; and a control unit connected to the at least one pair of electrodes and performs control to power on the electrodes or power off the electrodes, and controls the intensity of the electric field when the electrodes are powered on.
Abstract:
The present invention discloses array substrate, display device and method for controlling refresh rate of an array substrate. The array substrate includes; a plurality of pixel structures each including gate line, data line, common electrode line, first switching element at intersection of the gate line and the data line, pixel electrode, second switching element, and first transparent electrode. Gate, source and drain of the first switching element are connected to the gate line, the date line and the pixel electrode, respectively. Gate, source and drain of the second switching element are connected to second switching controlling line, common electrode signal terminal and the first transparent electrode, respectively. A first storage capacitance is formed between the pixel electrode and the common electrode line and/or between the pixel electrode and the gate line, and a second storage capacitance is formed between the pixel electrode and the first transparent electrode.
Abstract:
An opposed substrate (9′) comprises: a substrate (1); a static electricity protective electrode (2), a bridging electrode (4) and a touch induction electrode (6) comprising a plurality of sub-units sequentially formed on the substrate (1), wherein the distribution of the static electricity protective electrode (2) on the substrate (1) corresponds to dummy regions between sub-units, and the static electricity protective electrode (2), the bridging electrode (4) and the touch induction electrode (6) are insulated from each other. The opposed substrate (9′) has a good touching effect. A method for manufacturing the opposed substrate, and a liquid crystal display touch panel are also disclosed.
Abstract:
The present disclosure provides a pixel unit, a display substrate, a display panel, and a display device. The pixel unit includes a slit electrode having a slit. The pixel unit includes at least two sub-pixels corresponding to different colors, each of the pixels includes n domain areas arranged along a first direction, n is a positive integer greater than or equal to 2, extension directions of the slits of the slit electrodes in any two adjacent domain areas in the n domain areas of the pixel unit are different, an acute angle between an extension direction of the slit in each domain area and a second direction is a predetermined angle, the predetermined angle is greater than or equal to 30° and less than 45°, and the second direction intersects with the first direction.
Abstract:
A display device includes a controller, a frame, a display panel, an FPC and a force sensing structure; wherein the FPC is disposed on a back side of the display panel and electrically connected to the display panel, and the back side of the display panel is a side opposite to a light-emitting surface of the display panel; the force sensing structure is disposed on the FPC and electrically connected to the controller by the FPC; and the frame is disposed on a side, distal from the display panel, of the FPC, and a specified distance exists between the frame and the force sensing structure.
Abstract:
The present disclosure relates to a display apparatus and an electronic device, relating to the technical field of display. The display apparatus may comprise a display panel, a main circuit board, a bridging circuit board, and a first shielding adhesive tape. The main circuit board may be provided on the back surface of the display panel; the bridging circuit board may be provided at the side of the main circuit board distant from the display panel, and may be connected to the main circuit board in a binding mode; and the first shielding adhesive tape may be provided at the side of the main circuit board distant from the display panel, and expose the bridging circuit board.
Abstract:
There is provided a display device including a cover plate and a display panel; the cover plate includes a middle plane part, a first edge curved surface part, a second edge covered surface part and a corner curved surface part; the display panel includes a middle part, an edge part and a corner part; the middle part is arranged corresponding to the middle plane part; the edge part includes a first edge part and a second edge part; the first edge part and the first edge curved surface part are arranged correspondingly, and the second edge part and the second edge curved surface part are arranged correspondingly; the corner part and the corner curved surface part are correspondingly arranged; the middle part is in a display area; at least a portion of the edge part and the corner part adjacent to the middle part is in the display area.
Abstract:
A touch sensor and a display apparatus are disclosed. The touch sensor includes a first opening region, first touch electrodes, second touch electrodes, and a conducting structure. The first touch electrodes include first touch sub-electrodes; the second touch electrodes include second touch sub-electrodes; each of a first group of second touch electrodes further includes a transition touch electrode; a virtual straight line passing through the center of the first opening region respectively intersects with two sides of the transition touch electrode at a first position and a second position, and a distance between the first position and the second position is less than a maximum width of at least one of the second touch sub-electrodes; and the conducting structure at least partially surrounds an edge of the first opening region, and is connected with the transition touch electrode in parallel and electrically.
Abstract:
A display device includes a controller, a frame, a display panel, an FPC and a force sensing structure; wherein the FPC is disposed on a back side of the display panel and electrically connected to the display panel, and the back side of the display panel is a side opposite to a light-emitting surface of the display panel; the force sensing structure is disposed on the FPC and electrically connected to the controller by the FPC; and the frame is disposed on a side, distal from the display panel, of the FPC, and a specified distance exists between the frame and the force sensing structure.
Abstract:
The present invention provides a driving method and a driving circuit of a display panel and a display device. The display panel comprises: gate lines and data line and pixel units, the data lines comprises: first data lines and second data lines, and a first predetermined number of first data line(s) and a second predetermined number of second data line(s) are alternately arranged. The driving method comprises a step of: scanning the gate lines in turn, wherein when scanning one gate line, a data voltage signal is applied to the first data lines or the second data lines. Compared to the driving method in the prior art, the driving method provided by the present invention allows lower power consumption of the OLED panel when display at the same brightness is achieved.