Abstract:
The present invention relates to specific Ga-naphthalocyanine chromophores with short chain alkoxy axial substituents, their use as almost colourless IR absorbers, for optical filter applications; especially for plasma display panels, or for laser welding of plastics. The compounds may be used in compositions for inks, paints and plastics, especially in a wide variety of printing systems and are particularly well-suited for security applications.
Abstract:
Provided is a 4-oxoquinoline compounds of the formula (I) (I) wherein A is selected from diradicals of the formulae (A.1), (A.2), (A.3), (A.4), (A.5) and (A.6), (A.1) (A.2) (A.3) (A.4) (A.5) (A.6) wherein R1, R2a, R2b, R3, R3a, if present R4a, R4b, R 5a, R5b, R6a, R6b, R6c, R6d, Rn1, Rn2, Rn3, Rn4, Rm5, Rm6, Rm7, Rm8, R7, R8a, R9 and R9a are as defined in the claims and in the description. Also provided is a method for their preparation and their use.
Abstract:
The present invention relates to a photoactive material comprising a donor substance and an acceptor substance, wherein the donor substance comprises or consists of one or more compounds of formula (I) described herein, or the acceptor substance comprises or consists of one or more compounds of formula (I) described herein, or the donor substance comprises or consists of a first compound of formula (I) described herein and the acceptor substance comprises a second compound of formula (I) described herein with the proviso that the first and second compound are not the same, as well as to an organic solar cell comprising said photoactive material. The present invention also relates to a photoelectric conversion device comprising or consisting of two or more organic solar cells comprising said photoactive material and to compounds of formula (I) as described herein for use as donor substance or as acceptor substance in a photoactive material, Further, the present invention relates to the use of a compound of formula (III) as described herein in the synthesis of a compound of formula (I)as described herein.