Abstract:
A touch screen to reduce touch pixel coupling. In some examples, the touch screen can include a first display pixel and a second display pixel in a row of display pixels, where the first display pixel can be configurable to be decoupled from the second display pixel during at least a touch sensing phase of the touch screen. In some examples, the touch screen can include a display pixel having a first and a second transistor, where the second transistor can be electrically connected to a gate terminal of the first transistor, and can be diode-connected. In some examples, the touch screen can include two display pixels, each display pixel having two transistors, where two of the transistors can be electrically connected to a first gate line, and the remaining two transistors can be individually electrically connected to a second and third gate line, respectively.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
Organic light emitting diode (OLED) backplanes and fine metal masks (FMMs) are described. In an embodiment, an OLED backplane includes an array of raised bottom electrodes, and an FMM includes an array of pixel openings and an array of recesses. The FMM can be positioned over the backplane such that the pixel openings are over the raised bottom electrodes onto which a layer is to be evaporated, and the recesses are over the raised bottom electrodes that are to be protected from the evaporated species.
Abstract:
Embodiments described herein generally take the form of methods and systems for identifying and/or reducing a parasitic capacitance variation in a capacitive integrated touch-sensing module that may arise from proximity to a nearby electronic display.
Abstract:
An electronic device may include a display having an array of organic light-emitting diodes formed on a substrate. An encapsulation layer may be formed over the array of organic light-emitting diodes to protect the organic light-emitting diodes from moisture and other contaminants. The encapsulation layer may include a transparent sheet of material interposed between upper and lower inorganic films. The reliability of the encapsulation layer is increased by dividing one or both of the inorganic films into multiple sub-layers. The sub-layers may have different densities and may be deposited in sequential steps. Additional moisture protection may be provided by forming a conformal thin-film coating over the organic light-emitting diodes. The conformal thin-film coating may be an aluminum oxide layer that is formed using atomic layer deposition techniques.
Abstract:
A TFT stack for a liquid crystal display is provided. The TFT stack includes a silicon layer that includes a heavily doped region, a non-doped region, and a lightly doped region between the heavily doped region and the non-doped region. The heavily doped region is hydrogenated. The TFT stack also includes an insulation layer that includes a first portion formed over the lightly doped region and a second portion disposed over the non-doped region and a gate metal electrode layer formed over the second portion of the non-doped region. The TFT stack also includes a first dielectric layer disposed over the gate metal electrode and over the first portion of the insulation layer. The heavily doped region is hydrogenated to reduce the dependence of the capacitance between the gate metal electrode and the conductive layer Cgd upon a bias voltage being applied between the gate metal electrode and the conductive layer.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.