Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
Methods and apparatus for providing access to a shared memory resource. In one embodiment, a first processor generates a first window register associated with the shared memory resource; and transmits the first window register from the first processor to a second processor, the first window register defining a first extent of address space within the shared memory resource that is directly accessible by the second processor without requiring a performance of arbitration operations by the first processor.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.
Abstract:
Methods and apparatus for enabling a peripheral processor to retrieve and load firmware for execution within the constraints of its memory. The peripheral processor is allocated a portion of the host processor's memory, to function as a logical secondary and tertiary memory for memory cache operation. The described embodiments enable the peripheral processor to support much larger and more complex firmware. Additionally, a multi-facetted locking mechanism is described which enables the peripheral processor and the host processor to access the secondary memory, while minimally impacting the other processor.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
Methods and apparatus for locking at least a portion of a shared memory resource. In one embodiment, an electronic device configured to lock at least a portion of a shared memory is disclosed. The electronic device includes a host processor, at least one peripheral processor and a physical bus interface configured to couple the host processor to the peripheral processor. The electronic device further includes a software framework that is configured to: attempt to lock a portion of the shared memory; verify that the peripheral processor has not locked the shared memory; when the portion of the shared memory is successfully locked via the verification that the peripheral processor has not locked the portion of the shared memory, execute a critical section of the shared memory; and otherwise attempt to lock the at least the portion of the shared memory at a later time.
Abstract:
Methods and apparatus for limiting wake requests from one device to one or more other devices. In one embodiment, the requests are from a peripheral processor to a host processor within an electronic device such as a mobile smartphone or tablet which has power consumption requirements or considerations associated therewith. In one implementation, the peripheral processor includes a wake-limiting procedure encoded in e.g., its software or firmware, the procedure mitigating or preventing continuous and/or overly repetitive “wake” requests from the peripheral processor.