Abstract:
In an embodiment, dynamically-generated code may be supported in the system by ensuring that the code either remains executing within a predefined region of memory or exits to one of a set of valid exit addresses. Software embodiments are described in which the dynamically-generated code is scanned prior to permitting execution of the dynamically-generated code to ensure that various criteria are met including exclusion of certain disallowed instructions and control of branch target addresses. Hardware embodiments are described in which the dynamically-generated code is permitted to executed but is monitored to ensure that the execution criteria are met.
Abstract:
One embodiment provides for a computer-implemented method comprising receiving a request to compile a set of program instructions coded in a high-level language, the set of program instructions including a pointer to a virtual memory address, the pointer having a pointer encoding including a base address and a length; while compiling the set of program instructions, decoding the base address and length from the pointer, wherein the base address specifies a first boundary for a memory allocation, the length defines a second boundary for the memory allocation and the length is an encoding of a size of the memory allocation; and generating a set of compiled instructions which, when executed, enable access to a physical address associated with a virtual address between the first boundary and the second boundary.
Abstract:
A method and an apparatus for an enhanced object model to allow concurrent execution for program code generated from dynamic programming languages, such as JavaScript, are described. An index structure may be introduced to an object model representing a dynamically typed object in addition to a type structure and a data payload storing property or field values of the object. Elements of the index structure may point at corresponding property values as an indirection for accessing the object.
Abstract:
In an embodiment, dynamically-generated code may be supported in the system by ensuring that the code either remains executing within a predefined region of memory or exits to one of a set of valid exit addresses. Software embodiments are described in which the dynamically-generated code is scanned prior to permitting execution of the dynamically-generated code to ensure that various criteria are met including exclusion of certain disallowed instructions and control of branch target addresses. Hardware embodiments are described in which the dynamically-generated code is permitted to executed but is monitored to ensure that the execution criteria are met.
Abstract:
A method and an apparatus to execute a code compiled from a source code to access an untyped variable are described. An optimized access code may be compiled in the code with speculative optimization via a type prediction of runtime value of the untyped variable. Invalidity of the type prediction may be dynamically detected for future runtime values of the untyped variable. The code may be updated with an access code compiled for the access without the speculative optimization based on the invalidity detection. The updated code can be executed for the access to the untyped variable without executing the optimized access code.
Abstract:
One embodiment provides for a computer-implemented method comprising receiving a request to compile a set of program instructions coded in a high-level language, the set of program instructions including a pointer to a virtual memory address, the pointer having a pointer encoding including a base address and a length; while compiling the set of program instructions, decoding the base address and length from the pointer, wherein the base address specifies a first boundary for a memory allocation, the length defines a second boundary for the memory allocation and the length is an encoding of a size of the memory allocation; and generating a set of compiled instructions which, when executed, enable access to a physical address associated with a virtual address between the first boundary and the second boundary.
Abstract:
A method and an apparatus to execute a code compiled from a source code to access an untyped variable are described. An optimized access code may be compiled in the code with speculative optimization via a type prediction of runtime value of the untyped variable. Invalidity of the type prediction may be dynamically detected for future runtime values of the untyped variable. The code may be updated with an access code compiled for the access without the speculative optimization based on the invalidity detection. The updated code can be executed for the access to the untyped variable without executing the optimized access code.
Abstract:
A method and an apparatus for concurrent accessing of dynamically type objects based on inline cache code are described. Inline cache initialization in a single thread may be off loaded to an interpreter without incurring unnecessary synchronization overhead. A thread bias mechanism may be provided to detect whether a code block is executed in a single thread. Further, the number of inline cache initializations performed via a compiler, such as baseline JIT compiler, can be reduced to improve processing performance.
Abstract:
A method and an apparatus for concurrent accessing of dynamically type objects based on inline cache code are described. Inline cache initialization in a single thread may be off loaded to an interpreter without incurring unnecessary synchronization overhead. A thread bias mechanism may be provided to detect whether a code block is executed in a single thread. Further, the number of inline cache initializations performed via a compiler, such as baseline JIT compiler, can be reduced to improve processing performance.
Abstract:
Aspects and features include a structure for a program directed to a target computing device and metadata that can be used by a verifier in the target computing device. The verifier can quickly and efficiently apply verification rules to identified sections of the program to determine whether the program is safe to execute by the target computing device. In some examples, the target computing device uses the verifier to identify, using the metadata, verifiable sections of instructions that violate execution safety policies. The verifier can apply verification rules to the verifiable sections to determine whether to execute each verifiable section despite instructions in the verifiable section violating execution safety policies. The program and the metadata can be generated, as an example, by a compiler from source code, and transmitted or otherwise distributed to target computing devices.