Abstract:
Automated wireless three-dimensional (3D) video conferencing is provided using a tunerless television device. A 3D video conference is automatically established with a wireless device capable of 3D video conferencing using a wireless communication interface of the tunerless television device. A first and a second two-dimensional (2D) video stream are received, using a camera interface module, from a first and a second video camera associated with the tunerless television device. A merged 3D video stream is created from the first 2D video stream and the second 2D video stream using a 3D video offload processing module operatively coupled to the camera interface module. The merged 3D video stream is sent to the wireless device using the wireless communication interface. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
Methods for controlling a Power On Reset (POR) circuit in an Integrated Circuit (IC) are presented. In one embodiment, a method includes an operation for gating a test POR signal configured to selectively disable an output of a POR circuit, and an operation for programming a fuse. The programming of the fuse includes operations for disabling the signal path of the test POR signal, and for enabling the output of the POR circuit. In another embodiment, the signal path of the test POR signal includes a pass gate, where permanently disabling the signal path is performed by disconnecting the pass gate.
Abstract:
A method consistent with certain implementation involves presenting a graphical user interface (GUI) to a user on a display, where the GUI presents a visual representation of a room that is adapted to be adjusted in size and shape by user manipulation of a controller; the GUI has a drop and drag menu adapted to selection of an object from a plurality of objects for placement at any selected position within the room; at least one of the objects comprising a loudspeaker; and where the GUI provides for input of data characterizing the loudspeaker. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A consumer electronics device has a video display, a processor controlling the display, and a computer readable storage medium accessible to the processor. The storage medium bears instructions executable by the processor to cause a user interface (UI) to appear on the display, where the UI includes plural alpha-numeric elements. Further, each element includes plural alpha-numeric characters arranged in a row. Even further, each element is characterized by a color, a row orientation, and a size, where at least the size is established at least in part by a frequency of selection of an element. Thus, at least a first element has a first color, first size, and first row orientation and at least a second element has a second color, second size, and second row orientation respectively different from the first color, first size, and first row orientation.
Abstract:
A method consistent with certain implementation involves presenting a graphical user interface (GUI) to a user on a display, where the GUI presents a visual representation of a room that is adapted to be adjusted in size and shape by user manipulation of a controller; the GUI has a drop and drag menu adapted to selection of an object from a plurality of objects for placement at any selected position within the room; at least one of the objects comprising a loudspeaker; and where the GUI provides for input of data characterizing the loudspeaker. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
The circuit, typically a delay-locked loop, comprises a phase detector, a first counter, a second counter, and a comparator. The phase detector compares a phase of a first clock signal with a phase of a second clock signal. The first counter generates first count signals and adjusts the first count signals when the phase detector indicates that the phases of the first and the second clock signals are out of alignment. The second counter generates second count signals. The first comparator generates a first comparison signal in response to a comparison between the first count signals and the second count signals. The second clock signal is generated in response to the first comparison signal.
Abstract:
Automated wireless three-dimensional (3D) video conferencing is provided using a tunerless television device. A 3D video conference is automatically established with a wireless device capable of 3D video conferencing using a wireless communication interface of the tunerless television device. A first and a second two-dimensional (2D) video stream are received, using a camera interface module, from a first and a second video camera associated with the tunerless television device. A merged 3D video stream is created from the first 2D video stream and the second 2D video stream using a 3D video offload processing module operatively coupled to the camera interface module. The merged 3D video stream is sent to the wireless device using the wireless communication interface. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A phase shift circuit that includes two, rather than four, delay chains and corresponding selectors is described. This provides a significant area savings and reduces the intrinsic delay of the phase shift circuit, which is particularly beneficial for embodiments in which there is no intrinsic delay matching. In one implementation, the phase shift circuit includes a first delay circuit and a matching delay circuit. The first delay circuit provides a first delay that includes a first intrinsic delay and a first intentional delay. The delay matching circuit provides a matching delay that matches the first intrinsic delay. In one implementation, the phase shift circuit also includes a second delay circuit to provide a second delay that includes a second intrinsic delay and second intentional delay, where the second intrinsic delay matches the first intrinsic delay and the second intentional delay is half as long as the first intentional delay.
Abstract:
A method and device is provided for platform independent device communication by detecting a request at a processor-based device to perform a function, determining an external device corresponding to the request, retrieving a tag for the external device for performing a function corresponding to the request and generating a message implemented in XMPP, having embedded therein the tag, wherein the tag is essential at the external device for performing the function corresponding to the request. Receiving the message at a device, determining whether the message comprises a device message, retrieving a tag included in the message, wherein the tag corresponds to an executable command to perform a function and executing the tag to perform the function.
Abstract:
A first periodic signal generation circuit generates first periodic output signals. A second periodic signal generation circuit generates second periodic output signals. A first multiplexer circuit receives the first and the second periodic output signals. An interface circuit coupled to external pins generates a third periodic output signal based on a periodic signal selected by the first multiplexer circuit. A second multiplexer circuit receives the third periodic output signal at an input. A first periodic feedback signal provided to the first periodic signal generation circuit is based on a signal selected by the second multiplexer circuit. A third multiplexer circuit receives the third periodic output signal at an input. A second periodic feedback signal provided to the second periodic signal generation circuit is based on a signal selected by the third multiplexer circuit.