Abstract:
A group of computers is configured to implement a block storage service. The block storage service includes a block-level storage for storing data from a set of distinct computing instances for a set of distinct users. An interface is configured to allow the set of distinct users to specify respective destinations for storing backup copies of respective data stored in the block-level storage for the distinct users. At least some of the respective destinations are for different storage systems remote from one another. A backup copy function is provided for creating backup copies of data stored in the block-level storage by the set of distinct computing instances for the set of distinct users. The backup copies are stored in different destination locations specified by respective ones of the plurality of distinct users via the interface.
Abstract:
Techniques are described for managing access of executing programs to non-local block data storage. In some situations, a block data storage service uses multiple server storage systems to reliably store network-accessible block data storage volumes that may be used by programs executing on other physical computing systems. A group of multiple server block data storage systems that store block data volumes may in some situations be co-located at a data center, and programs that use volumes stored there may execute on other physical computing systems at that data center. If a program using a volume becomes unavailable, another program (e.g., another copy of the same program) may in some situations obtain access to and continue to use the same volume, such as in an automatic manner in some such situations.
Abstract:
As exterior routing protocols generally do not provide information about the internal routing paths of an autonomous system, a particular autonomous system has limited information about the internal health of other autonomous systems. However, if a monitoring system has access to routing data and/or other network data from multiple points of an autonomous system, the monitoring system can estimate, with some accuracy, the health of the autonomous system. In turn, by monitoring at least some of autonomous systems forming a larger internetwork, such as the Internet, the monitoring system can estimate the overall health of at least portions of the internetwork.
Abstract:
Techniques, including systems and methods, for capturing data sets include performing a client-side two-phase commit to ensure one or more data consistency conditions. A logical volume may represent a data set that is distributed among a plurality of physical storage devices. One or more client devices are instructed to block at least acknowledgment of write operations. When the one or more client devices have blocked at least acknowledgment of write operations, one or more servers in communication with the physical storage devices are instructed to capture corresponding portions of the data set. When the servers have been instructed to capture corresponding portions of the data set, the client devices are instructed to resume at least acknowledgment of write operations.
Abstract:
Virtual data stores may be sparsely provisioned by virtual data storage services in a manner that controls risk of implementation resource shortages. Relationships between requested data storage space size, data storage server capacity, allocated data storage space size and/or allocated data storage space utilization may be tracked on a per data store, per customer, per data storage server, and/or a per virtual data storage service basis. For each such basis, a set of constraints may be specified to control the relationships. The set of constraints may be enforced during implementation resource allocation, and by migration of data storage space portions to different implementation resources as part of a sparse provisioning load balancing. Sparse provisioning details may be made explicit to virtual data storage service customers to varying degrees including explicit, aggregate on a per customer basis, and aggregate on a per virtual data storage service basis.
Abstract:
Techniques are described for managing access of executing programs to non-local block data storage. In some situations, a block data storage service uses multiple server storage systems to reliably store block data that may be accessed over one or more networks by programs executing on other physical computing systems. Users may create block data storage volumes that are each stored by at least two of the server block data storage systems, and may initiate use of such volumes by one or more executing programs, such as in a reliable manner by enabling an automatic switch to a second volume copy if a first volume copy becomes unavailable. A group of multiple server block data storage systems that store block data volumes may in some situations be co-located at a data center, and programs that use volumes stored there may execute on other physical computing systems at that data center.
Abstract:
Techniques are described for managing access of executing programs to non-local block data storage. In some situations, a block data storage service uses multiple server storage systems to reliably store copies of network-accessible block data storage volumes that may be used by programs executing on other physical computing systems, and snapshot copies of some volumes may also be stored (e.g., on remote archival storage systems). A group of multiple server block data storage systems that store block data volumes may in some situations be co-located at a data center, and programs that use volumes stored there may execute on other computing systems at that data center, while the archival storage systems may be located outside the data center. The snapshot copies of volumes may be used in various ways, including to allow users to obtain their own copies of other users' volumes (e.g., for a fee).
Abstract:
Techniques are described for managing access of executing programs to non-local block data storage. In some situations, a block data storage service uses multiple server storage systems to reliably store network-accessible block data storage volumes that may be used by programs executing on other physical computing systems. A group of multiple server block data storage systems that store block data volumes may in some situations be co-located at a data center, and programs that use volumes stored there may execute on other physical computing systems at that data center. If a program using a volume becomes unavailable, another program (e.g., another copy of the same program) may in some situations obtain access to and continue to use the same volume, such as in an automatic manner in some such situations.
Abstract:
A transaction request compliant with a first version of a journal schema of a multi-data-store storage system is received at a journal manager. The journal schema indicates attributes of data objects which may be materialized at various data stores of the system. The journal manager stores an entry in the system's journal if the transaction meets acceptance criteria. Writes indicated in the entry are materialized at the data stores after verifying that the entry is compliant with the journal schema. After verifying that member data stores have approved a proposed change to the journal schema, another entry indicating a different version of the journal schema is added to the journal. Client-side components of the system obtain the current version of the journal schema to prepare the transaction requests.
Abstract:
Commitments against various resources can be dynamically adjusted for customers in a shared-resource environment. A customer can provision a data volume with a committed rate of Input/Output Operations Per Second (IOPS) and pay only for that commitment (plus any overage), for example, as well as the amount of storage requested. The customer can subsequently adjust the committed rate of IOPS by submitting an appropriate request, or the rate can be adjusted automatically based on any of a number of criteria. Data volumes for the customer can be migrated, split, or combined in order to provide the adjusted rate. The interaction of the customer with the data volume does not need to change, independent of adjustments in rate or changes in the data volume, other than the rate at which requests are processed.