Abstract:
In some implementations, a process includes forming a layer of a liquid optically clear adhesive (LOCA) on a surface of a first substrate. Additionally, the LOCA can be contacted with a surface of a second substrate. The LOCA can then be exposed to Ultraviolet (UV) radiation. After exposing the LOCA to UV radiation, additional substrates can be coupled to the first substrate, the second substrate, or both to form a display stack. In an implementation, the total energy/unit area for the UV radiation applied to the LOCA can be no greater than 25,000 kJ/cm2.
Abstract translation:在一些实施方案中,方法包括在第一基底的表面上形成液体光学透明粘合剂层(LOCA)层。 另外,LOCA可以与第二衬底的表面接触。 然后,LOCA可以暴露于紫外(UV)辐射。 在将LOCA暴露于UV辐射之后,可以将另外的衬底耦合到第一衬底,第二衬底或两者以形成显示器堆叠。 在实施中,施加到LOCA的UV辐射的总能量/单位面积可以不大于25,000kJ / cm 2。
Abstract:
Electronic devices that include reflective displays for rendering content, touch sensors layered atop the reflective displays for detecting touch inputs, front lights layered atop the touch sensors for lighting the reflective displays and antiglare components for reducing glare caused by ambient light. This disclosure also describes techniques for assembling electronic devices including these component stacks.
Abstract:
Systems, methods, and computer-readable media are disclosed for self-healing flexible electrophoretic displays and related devices. In one embodiment, an example flexible electrophoretic display may include a flexible plastic thin film transistor (TFT) backplane having a first width, an electrophoretic layer coupled to the flexible plastic TFT backplane, an electrode layer coupled to the electrophoretic layer, an integrated circuit disposed on the flexible plastic TFT backplane, and a protective sheet having a second width that is greater than or equal to the first width.
Abstract:
A multifunctional device layer may include a lightguide substrate having an optically patterned surface and an opposing non-patterned surface. The non-patterned surface of the lightguide substrate is coated with a first material having a first refractive index and the patterned surface is coated with a second material having a second refractive index. The first refractive index may be lower than the second refractive index and each may be lower than a refractive index of the lightguide substrate. A touch sensor may be formed on the coated non-patterned surface of the lightguide substrate, the coated patterned surface, or on an interstitial layer deposited on the coated non-patterned surface or the coated patterned surface. An anti-glare/anti-reflective coating potentially having ultraviolet (UV) absorption properties may be applied to the touch sensor.
Abstract:
An electronic device includes a display for rendering content. The display may include a protective sheet that is located between an image-displaying component and a liquid optically clear adhesive (LOCA) that adheres another component layered atop the display, such as a front light, a touch sensor or a cover layer. In some cases, the protective sheet may be a polymer sheet coated with a layer of ceramic material that prevents migration of a reactive species, such as a photoinitiator, between the protective sheet and the LOCA. Alternatively, a plasma treatment, a UV-light-ozone treatment, or a thermal treatment may be applied to the protective sheet to remove material including the reactive species and/or form a barrier layer to prevent migration of the reactive species. Still alternatively, the protective sheet may be a thin flexible glass sheet that does not include constituents that interact with the LOCA.
Abstract:
Described herein are electronic devices that includes a display stack having a cover component atop a lightguide component and a display component below the lightguide component. In some instances, the cover component including an antiglare etching applied to a top surface of a coverglass and a touch pattern applied to a bottom surface of the coverglass. In some cases, an optically clear adhesive layer formed from two types of optically clear adhesive may be located between the cover component and the lightguide component and a ring adhesive may be applied to around an outer edge of the cover component, the optically clear adhesive and the lightguide component.
Abstract:
An electronic device may include a display assembly that is adhered to a cover sheet and the cover sheet is elastically bonded to a frame with a compressive and elastic bonding component. Inside the device, the display assembly is spaced apart from the frame, which allows the display assembly to bend or move. The compressive and elastic bonding component has two strong adhesive layers and a low modulus layer that dissipates stress of the display assembly via the cover sheet, such that the compressive and elastic bonding component permits the cover sheet to bend.
Abstract:
Systems, methods, and computer-readable media are disclosed for self-healing flexible electrophoretic displays and related devices. In one embodiment, an example flexible electrophoretic display may include a flexible plastic thin film transistor (TFT) backplane having a first width, an electrophoretic layer coupled to the flexible plastic TFT backplane, an electrode layer coupled to the electrophoretic layer, an integrated circuit disposed on the flexible plastic TFT backplane, and a protective sheet having a second width that is greater than or equal to the first width.
Abstract:
This disclosure describes methods and devices useful for adhering a first substrate of a display to a second substrate of the display. In example embodiments, a first plate may be sealed to the first substrate, and a second plate may be sealed to the second substrate. In addition, a layer of adhesive may be disposed between the first and second substrates to assist in adhering the first substrate to the second substrate. A pressure may then be applied to the first and second plates as well as the first and second substrates to assist in the adhesion process. In example embodiments, the first plate may assist in applying pressure proximate a perimeter of the first substrate such that the perimeter of the first substrate adheres to a perimeter of the second substrate.
Abstract:
In some implementations, an electronic device includes a display stack to display content. The display stack can include a number of substrates coupled using a liquid optically clear adhesive (LOCA). In some implementations, the LOCA can have a modulus of elasticity of no greater than 80,000 Pa. Additionally, the display stack can be formed using a process that includes applying an external force to the display stack by placing the display stack between two fixtures. In an implementation, the external force can be applied while heating the display stack at a temperature of at least 60° C. and cooling the display stack according to a particular cooling rate.