Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
Methods and apparatus are described. A method includes an accelerated processing device running a process. When a maximum time interval during which the process is permitted to run expires before the process completes, the accelerated processing device receives an operating-system-initiated instruction to stop running the process. The accelerated processing device stops the process from running in response to the received operating-system-initiated instruction.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A power supply (406) supplies electrical power to a first portion (302) of an integrated circuit (209) (e.g., a portion designed to operate in a relatively wide temperature range). The first portion (302) of the integrated circuit (209) includes an on-die temperature sensor (306). If the first portion (402) is above a first temperature threshold (e.g., 0° C.), the power supply (406) also supplies electrical power to a second portion (304) of the integrated circuit (209) (e.g., a portion designed to operate in a relatively narrow temperature range). However, if the first portion (302) of the integrated circuit (209) is not above the first temperature threshold, the power supply (406) continues to only supply electrical power to the first portion (302) of the integrated circuit (209). In this manner, the integrated circuit (209) is less likely to malfunction and/or create a security problem.
Abstract:
Methods and apparatus for storing and delivering compressed data are disclosed. In one embodiment, a direct memory access (DMA) unit with a lossless coder/decoder (CODEC) receives uncompressed data. The direct memory access unit then compresses the uncompressed data to produce lossless compressed data, and stores the lossless compressed data in a memory, wherein the compressing operation and the storing operation are each part of a direct memory access (DMA) write operation. In another embodiment, the direct memory access (DMA) unit receives lossless compressed data. The direct memory access unit then decompresses the compressed data to produce lossless decompressed data, and delivers the decompressed data to an output device, wherein the decompressing operation and the receiving operation are each part of a direct memory access (DMA) read operation.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.