Abstract:
An enclosure having an indicium (e.g., logo) and a method for securing an indicium to an enclosure is disclosed. The enclosure includes an aperture extending through an interior portion and an exterior portion of the enclosure. The aperture may include concentric portions. For example, the aperture may include a first opening formed on an interior portion and a second opening smaller than the first opening formed on the exterior portion. The indicium may include a flange member such that the indicium may extend through the first opening but not the second opening. Also, in some embodiments, a plate is adhesively secured to the indicium and the enclosure; however, the indicium is not directly adhesively secured to the enclosure. This may prevent adhesively from protruding from an interface region between the indicium and the enclosure.
Abstract:
An electronic device having a securing member for a camera module is disclosed. The securing member may include several flexible spring elements extending around the camera module to maintain the position of the camera module during an assembly process of the electronic device. The securing member and the housing may be made from an electrically conductive material or materials. In this manner, the securing member may further provide the camera module with an electrical ground to prevent excessive electric charge within the camera module. In some embodiments, an alignment member is positioned on the housing and aligns the camera module and/or securing member with an aperture of the housing.
Abstract:
An electronic device may be provided with a display mounted in a display frame assembly that includes a plastic structure overmolded over a display frame. A housing midplate may be used to provide the electronic device with mechanical rigidity and strength, and may also be used as a sensor plane. For sensor plane applications, accurate placement and assembly of the midplate in the housing can be critical. The housing midplate may be accurately assembled to the display frame using connections formed using welded tabs, welded and screwed nuts, overmolded plastic heat stake structures, or overmolded plastic structures and adhesive. Rework and repair operations may be performed by disconnecting connections such as welds using cutting equipment, by using solvent to dissolve adhesive, by unscrewing welded nuts, or by removing heat stake structures. Following rework or repair, a fresh midplate and associated components may be attached to the display frame.
Abstract:
A VR system for vehicles that may implement methods that address problems with vehicles in motion that may result in motion sickness for passengers. The VR system may provide virtual views that match visual cues with the physical motions that a passenger experiences. The VR system may provide immersive VR experiences by replacing the view of the real world with virtual environments. Active vehicle systems and/or vehicle control systems may be integrated with the VR system to provide physical effects with the virtual experiences. The virtual environments may be altered to accommodate a passenger upon determining that the passenger is prone to or is exhibiting signs of motion sickness.
Abstract:
A portable electronic device includes a housing, a display at least partially within the housing, a front cover coupled to the housing and positioned over the display, a rear cover coupled to the housing and defining a first portion of a rear exterior surface of the portable electronic device, a protrusion defining a sensor array region of the rear cover and a second portion of the rear exterior surface, and an internal surface opposite the second portion of the rear exterior surface. The portable electronic device also includes a sensor array mounted within the housing along the sensor array region and comprising a frame member coupled to the rear cover along the internal surface and defining a wall structure defining a first container region and a second container region, a camera module positioned in the first container region, and a depth sensor module positioned in the second container region and attached to the internal surface of the rear cover.
Abstract:
A VR system for vehicles that may implement methods that address problems with vehicles in motion that may result in motion sickness for passengers. The VR system may provide virtual views that match visual cues with the physical motions that a passenger experiences. The VR system may provide immersive VR experiences by replacing the view of the real world with virtual environments. Active vehicle systems and/or vehicle control systems may be integrated with the VR system to provide physical effects with the virtual experiences. The virtual environments may be altered to accommodate a passenger upon determining that the passenger is prone to or is exhibiting signs of motion sickness.
Abstract:
An electronic device includes a housing that defines an aperture, and a display assembly positioned in the aperture. The display assembly can include a display layer having a first portion, and a second portion bending at least partially below the first portion. The first portion and the second portion can define a bend volume, and a potting material can be disposed in the bend volume, such that the potting material contacts the first portion and the second portion. An internal enclosure can be contoured to the display assembly.
Abstract:
A device includes a display and a housing. The housing at least partially surrounds the display. The housing includes a first housing segment defining at least a first portion of an exterior surface of the device and a first interlock feature having an interlock surface that is offset with respect to an end surface of the first housing segment. The first interlock feature has a first opening formed in the interlock surface. The housing further includes a second housing segment defining at least a second portion of the exterior surface of the device and a second interlock feature having a second opening aligned with the first opening, and a non-conductive housing component defining a third portion of the exterior surface of the device and extending into the first opening and the second opening.
Abstract:
Signals usable to determine a path of a vehicle towards a particular stopping point in a vicinity of a destination are detected from an individual authorized to provide guidance with respect to movements of the vehicle. Based at least in part on the signals and a data set pertaining to the external environment of the vehicle, one or more vehicular movements to be implemented to proceed along the path are identified. A directive is transmitted to a motion control subsystem of the vehicle to initiate one of the vehicular movements.
Abstract:
A device includes a display and a housing. The housing at least partially surrounds the display. The housing includes a first housing segment defining at least a first portion of an exterior surface of the device and a first interlock feature having an interlock surface that is offset with respect to an end surface of the first housing segment. The first interlock feature has a first opening formed in the interlock surface. The housing further includes a second housing segment defining at least a second portion of the exterior surface of the device and a second interlock feature having a second opening aligned with the first opening, and a non-conductive housing component defining a third portion of the exterior surface of the device and extending into the first opening and the second opening.