Abstract:
Various systems and methods are disclosed herein, which provide isolated systems with an auxiliary, multi-signal digital feedback loop for reporting a plurality of different potential fault conditions in an output system (e.g., output short circuit, output over-voltage, output under-voltage, output over temperature, etc.) to a Primary Controller in an input system. The signals may be sent according to any desired standardized (or proprietary) data transmission protocols. Use of a digital feedback loop allows the signals to be passed to the Primary Controller more quickly than is allowed by traditional analog feedback paths—and while using only a single optocoupler device for the transmission of all fault conditions. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, monitors, as well as desktop, laptop, and tablet computers.
Abstract:
A wireless power transmitting device transmits wireless power signals to a wireless power receiving device using an output circuit that includes a wireless power transmitting coil. Measurement circuitry is coupled to the output circuit to help determine whether the wireless power receiving device is present and ready to accept transmission of wireless power. The measurement circuitry includes a measurement circuit that is coupled to the output circuit and that measures signals while oscillator circuitry supplies the output circuit with signals at a probe frequency. The measurement circuitry also includes a measurement circuit that is coupled to the output circuit and that measures signals while the oscillator circuitry sweeps signals applied to the output circuit between a first frequency and a second frequency to detect sensitive devices such as radio-frequency identification devices. Impulse response circuitry in the measurement circuitry is used to make inductance and Q factor measurements.
Abstract:
A power converter can be implemented as a series of power conversion stages, including a wireless power conversion stage. In typical embodiments, the power converter receives power directly from mains voltage and outputs power to a battery within an electronic device. A transmitter side of the power converter converts alternating current received from a power source (e.g., mains voltage) to an alternating current suitable for applying to a primary coil of the wireless power conversion stage of the power converter.
Abstract:
Devices and methods for controlling brightness of a display backlight are provided. A display backlight controller may control the brightness of the display backlight by changing a duty cycle of a PWM signal that drives the LED current. However, because of LED efficacy and response time, the final output brightness (NITS) may not be linear between 0% to 100%. The disclosed methods may be used to correct the brightness using a predetermined correction factor. Further, the minimum and maximum duty cycle of the output dimming duty cycle may be limited or corrected. In one example, a backlight controller receives an input duty cycle and determines a product of the input duty cycle and a maximum duty cycle to produce a reduced duty cycle. Moreover, the backlight driver may determine a corrected duty cycle using the correction factor. The final output duty cycle and LED current may then be determined.
Abstract:
The embodiments discussed herein relate to systems, methods, and apparatus for executing a pulse frequency modulation (PFM) mode of a boost converter in order to ensure that a switching frequency of the boost converter is a above an audible frequency threshold. In this way, a user operating a display device that is controlled by the boost converter will not be disturbed by audible noises generated at the display device. The PFM mode enforces an audible frequency threshold by using control circuitry designed to increase or decrease the frequency of a pulse signal depending on how the frequency of the pulse signal changes over time. The control circuitry can apply an additional load to the boost converter in order to increase the frequency of the pulse signal when the frequency is approaching the audible frequency threshold.
Abstract:
Disclosed embodiments relate to techniques for operating a backlight unit of a display device in a redundant mode and a non-redundant mode in the event of an open circuit condition or short string condition. For instance, in a redundant mode, multiple LED strings are driven to provide a first quantity of light, such that the combined output from all LED strings is capable of providing a total light output corresponding to a maximum brightness setting for the display device. In the case that one of the LED strings fails due to an open circuit condition or short string condition, the remaining LED strings may be driven to provide a second quantity of light that is greater than the first, such that the combined light output from the remaining LED strings provides the same total light output for achieving the maximum brightness setting.
Abstract:
Disclosed embodiments relate to techniques for operating a backlight unit of a display device in a redundant mode and a non-redundant mode in the event of a shorted LED failure condition. For instance, in a redundant mode, multiple LED strings arranged in an end-to-end configuration are each driven to provide a first quantity of light, such that the combined output from all LED strings is capable of providing a total light output corresponding to a maximum brightness setting for the display device. In the case that an LED on one of the strings fails due to a shorted LED failure condition, the remaining functional LEDs of the affected string may be driven to provide a second quantity of light, such that the combined output from the affected strings and the non-affected strings may still provide the same total light output for achieving the maximum brightness setting. The second quantity of light is greater than the first quantity.
Abstract:
A power converter includes a buck converter with a low-side switch. During a discharge mode, current passes through the low-side switch to form a current loop. The low-side switch is typically closed synchronously with the opening of a high-side switch coupled to an input voltage level to the buck converter. The power converter also includes a high-side controller and a low-side controller, which together are configured to adjust the timing of the operation mode of the high-side controller between a storage mode and the discharge mode.
Abstract:
A backlight driver chip for an electronic device includes an input that receives data corresponding to a brightness of a backlight device. The backlight driver chip also includes correction circuitry that determines an amplitude correction factor based at least in part on the data and the brightness of the backlight device. The correction circuitry also determines a corrected brightness based at least in part on the amplitude correction factor. The backlight driver chip further includes an output that provides a current signal that drives the backlight device, wherein the current signal is based at least in part on the corrected brightness.
Abstract:
An electronic device has an I/O port, a bus connector and a transistor that is connected between the I/O port and a communications contact of the bus connector. A control circuit is connected to the transistor to maintain a gate voltage of the transistor independent of power supply voltage on a power supply contact of the connector. Other embodiments are also described and claimed.