Abstract:
Aspects of the subject technology relate to control circuitry for operating light-emitting diodes (LEDs). The control circuitry may include a pulse-width-modulation (PWM) driver for the LEDs and headroom voltage control circuitry. The PWM driver may adjust a rising edge or a trailing edge of the PWM cycles for various LEDs to ensure a headroom voltage detection window for the headroom voltage control circuitry to sample the headroom voltage of those LEDs without being affected by the rising edge of the PWM cycle for LED or the falling edge of the PWM cycle for another LED.
Abstract:
A display may have an array of pixels illuminated using a backlight unit. The backlight unit may include multiple strings of light-emitting diodes (LEDs) and a boost converter for providing an output voltage to the multiple LED strings. The boost converter may have a single-phase single-switch, single-phase multi-switch, and/or multi-phase multi-switch configuration, where the switches are turned off when the peak current is reached. When transitioning from a single phase to a dual phase operation, the second (slave) phase current may be slowly ramped up. When transition from the dual phase to the single phase operation, the output voltage may be elevated while slowing ramping down the slave phase current. The boost converter may include a current detection circuit for adjusting the peak current of each phase to balance the average current levels. The boost converter may also include an in-rush current controller configured to sense a short fault.
Abstract:
Various systems and methods are disclosed herein, which provide isolated systems with an auxiliary, multi-signal digital feedback loop for reporting a plurality of different potential fault conditions in an output system (e.g., output short circuit, output over-voltage, output under-voltage, output over temperature, etc.) to a Primary Controller in an input system. The signals may be sent according to any desired standardized (or proprietary) data transmission protocols. Use of a digital feedback loop allows the signals to be passed to the Primary Controller more quickly than is allowed by traditional analog feedback paths—and while using only a single optocoupler device for the transmission of all fault conditions. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, monitors, as well as desktop, laptop, and tablet computers.
Abstract:
A power conversion circuit, such as a buck converter/regulator, includes a feedback loop operatively coupling the output voltage to the controller for the switching mechanism. The feedback loop includes an analog error amplifier that sources current to the controller when the output voltage falls below a predetermined reference voltage and sinks current from the controller when the output voltage rises above a predetermined reference voltage. The feedback loop further includes at least one of a sinking boost circuit that sinks additional current from the controller when the output voltage falls below a low voltage threshold or a sourcing boost circuit that sources additional current to the controller when the output voltage rises above a high voltage threshold. The boost circuits can include analog amplifiers, digital comparators, or a combination thereof.
Abstract:
A measured voltage drop across a power-line transistor is used as a sensing element to measure the current and detect an over-current condition for an LED backlight system. An over-current or short condition is detected when the measured voltage drop exceeds a threshold. Accurate detection of the over-current condition is achieved by calibrating the RDS-ON (i.e., internal resistance between drain and source, when transistor is on) of the power-line transistor. In one embodiment, the calibration of RDS-ON is performed by ramping down the threshold from an initial value and using the tripped threshold to determine the actual value for RDS-ON. In another embodiment, the calibration of RDS-ON is performed by using two thresholds, a first threshold to calibrate RDS-ON and a second threshold to detect the over-current condition.
Abstract:
Systems and methods for light-load efficiency in displays may include a backlight driver circuit that may adjust a gate drive voltage provided to a gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) in the boost converter based on the load conditions of light-emitting diodes used to illuminate the display panel. The backlight driver circuit may also switch between two different voltage sources to further broaden a range of gate drive voltages available to drive the gate of the MOSFET in the boost converter. As a result, the backlight driver circuit may decrease gate drive losses associated with the MOSFET, thereby increasing the efficiency of the boost converter.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may include a feedforward loop and a feedback loop for a power supply for the light-emitting diodes. The light-emitting diodes may be arranged in strings that are individually controllable by a current control transistor on the string. The feedforward loop may determine a total upcoming load current for the power supply based on reference voltages for controlling each of the current control transistors. The output of the power supply may be modified based on a combination of a current from the feedforward loop and a current from the feedback loop.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may operate a light-emitting diode using a multi-peak pulse-width-modulation signal. The control circuitry may include a multi-stage driver having a relatively larger driver stage for providing a direct current through a light-emitting diode and a relatively smaller driver stage configured to cooperate with a pulse-width-modulation controller to pulse-width-modulate a current through the light-emitting diode.
Abstract:
Various systems, apparatuses, and methods are disclosed herein, which provide a new power conversion topology for isolated systems that does not include a transformer. Embodiments of the inventive systems comprise: a switching system utilizing high voltage, low leakage switches, e.g., Silicon Carbide (SiC) MOS-FETs; a power source; an inductor and a capacitor operating as a link stage resonant LC circuit; and a load. The switching system may be configured to be controlled in a synchronized ‘four phase’ control loop process, wherein the input switches are prevented from being closed at the same time as the output switches, thereby providing electrical isolation between the input power source and the load—without the use of a transformer. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, displays, and computers.
Abstract:
A measured voltage drop across a power-line transistor is used as a sensing element to measure the current and detect an over-current condition for an LED backlight system. An over-current or short condition is detected when the measured voltage drop exceeds a threshold. Accurate detection of the over-current condition is achieved by calibrating the RDS-ON (i.e., internal resistance between drain and source, when transistor is on) of the power-line transistor. In one embodiment, the calibration of RDS-ON is performed by ramping down the threshold from an initial value and using the tripped threshold to determine the actual value for RDS-ON. In another embodiment, the calibration of RDS-ON is performed by using two thresholds, a first threshold to calibrate RDS-ON and a second threshold to detect the over-current condition.