Abstract:
Some embodiments provide a device that employs novel processes for displaying data regarding its movement in a region. For instance, in some embodiments, the device captures and stores location data at a plurality of locations traversed along the route. Upon receiving a request to view the traversed locations along the route, the device displays a representation of at least a subset of locations along the route based on the stored location data. Upon receiving an identification of a particular location in the displayed representation of the subset of locations, the device displays information regarding the particular location.
Abstract:
Techniques for capturing images are described. In one scenario, one or more processors of an imaging device can obtain geodata information and time information associated with the imaging device. The geodata and time information is obtained prior to capturing a first image. Next, one or more second images can be identified from a database of images based on the geodata information and the time information. The processor(s) can be communicatively coupled to the database via a communications network. Additionally, the one or more processors can determine one or more image capture conditions associated with the one or more second images; and automatically modify one or more settings of the imaging device to be used for capturing the first image. The settings can be modified based on at least one of the one or more image capture conditions associated with the one or more second images. Other embodiments are possible.
Abstract:
A method that performs a series of interactive operations to calibrate a compass in a mobile device. The method requires a user to move the device to a variety of different orientations. In order to ensure that the device moves to a sufficient number and variety of orientations, the method instructs the user to rotate the device in a series of interactive operations. The interactive operations provide feedback to inform the user how well the user is performing the interactive operations. In some embodiments, the feedback is tactile (e.g., a vibration). In some embodiments the feedback is audible (e.g., a beep or buzz). In some embodiments, the feedback is visual (e.g., an image or images on a video display of the device). The feedback in some embodiments is continuous (e.g., a changing visual display) and in some embodiments is discrete (e.g., the device beeps after taking a good reading).
Abstract:
Methods, program products, and systems for proximity-based notifications are described. A proximity-based notification system can receive a request to be notified when a contact's mobile device is in proximity to a user's mobile device, obtain permission to receive information associated with the contact, receive the information associated with the contact, detect that the contact's mobile device is in proximity to the user's mobile device based on the information associated with the contact, and notify the user that the contact's mobile device is in proximity to the user's mobile device.
Abstract:
Techniques for processing task items are provided. A task item is electronic data that represents a task to be performed, whether manually or automatically. A task item includes one or more details about its corresponding task, such as a description of the task and a location of the task. Specifically, techniques for generating task items, organizing task items, triggering notifications of task items, and consuming task items are described. In one approach, a task item is generated based on input from a user and context of the input. In another approach, different attributes of task items are used to organize the task items intelligently into multiple lists. In another approach, actions other than the generation of notification are enabled or automatically performed, actions such as entailing, calling, texting, and searching.
Abstract:
Techniques for capturing images are described. In one scenario, one or more processors of an imaging device can obtain geodata information and time information associated with the imaging device. The geodata and time information is obtained prior to capturing a first image. Next, one or more second images can be identified from a database of images based on the geodata information and the time information. The processor(s) can be communicatively coupled to the database via a communications network. Additionally, the one or more processors can determine one or more image capture conditions associated with the one or more second images; and automatically modify one or more settings of the imaging device to be used for capturing the first image. The settings can be modified based on at least one of the one or more image capture conditions associated with the one or more second images. Other embodiments are possible.
Abstract:
Techniques for capturing images are described. In one scenario, one or more processors of an imaging device can obtain geodata information and time information associated with the imaging device. The geodata and time information is obtained prior to capturing a first image. Next, one or more second images can be identified from a database of images based on the geodata information and the time information. The processor(s) can be communicatively coupled to the database via a communications network. Additionally, the one or more processors can determine one or more image capture conditions associated with the one or more second images; and automatically modify one or more settings of the imaging device to be used for capturing the first image. The settings can be modified based on at least one of the one or more image capture conditions associated with the one or more second images. Other embodiments are possible.
Abstract:
Some embodiments provide a device that employs novel processes for displaying data regarding its movement in a region. For instance, in some embodiments, the device captures and stores location data at a plurality of locations traversed along the route. Upon receiving a request to view the traversed locations along the route, the device displays a representation of at least a subset of locations along the route based on the stored location data. Upon receiving an identification of a particular location in the displayed representation of the subset of locations, the device displays information regarding the particular location.
Abstract:
Techniques for triggering an action associated with a task items are provided. A task item associated with a triggering criterion is provided. The triggering criterion requires an occurrence of any of a plurality of communication events. The plurality of communication events includes a telephone call. In some implementations, at least two of the plurality of communication events are of different communication types. In some implementations, the different types are telephone calls, emails, and text messages. The occurrence of a first communication event of the plurality of communication events is detected. It is determined the triggering criterion is satisfied. In response to the determining, a notification associated with the task item is caused to be presented to a user of the electronic device.