Abstract:
The present invention relates to a method, in a base station of a MTC based communication system, of configuring bandwidth for a MTC user equipment, wherein bandwidth of the MTC user equipment is smaller than system bandwidth for MTC, the method comprising the steps of: receiving a first message from the MTC user equipment, the first message indicating an offset of bandwidth selected by the MTC user equipment according to a predetermined selection policy relative to the system bandwidth, wherein the selected bandwidth covers center frequency band of the system bandwidth; determining the bandwidth selected by the MTC user equipment according to the first message. According to the invention, the system bandwidth for MTC and the bandwidth of the MTC user equipments can be asymmetrically increased, while extending the capacity of MTC by allocating wider bandwidth. The cost for the user equipments in a MTC based communication system could be saved by reserving the bandwidth of the MTC user equipments or by reducing the increment of the bandwidth of the MTC user equipments while increasing the system bandwidth for MTC.
Abstract:
A method of specifying one or more sets of one or more physical resource block (PRB) pairs from among a plurality of PRB pairs in a subframe that a user equipment (UE) is to monitor for an enhanced physical downlink control channel (EPDCCH) includes sending, from a base station, a first representation of the PRB blocks, the representation including a plurality of bits, a total number of the plurality of bits being less than a product of total number of the plurality of PRB pairs and a total number of the one or more sets, the first representation indicating which of the plurality of PRB pairs are in at least one of the one or more sets of one or more PRB pairs the UE is to monitor for the EPDCCH.
Abstract:
A method of specifying one or more sets of one or more physical resource block (PRB) pairs from among a plurality of PRB pairs in a subframe that a user equipment (UE) is to monitor for an enhanced physical downlink control channel (EPDCCH) includes sending, from a base station, a first representation of the PRB blocks, the representation including a plurality of bits, a total number of the plurality of bits being less than a product of total number of the plurality of PRB pairs and a total number of the one or more sets, the first representation indicating which of the plurality of PRB pairs are in at least one of the one or more sets of one or more PRB pairs the UE is to monitor for the EPDCCH.
Abstract:
One embodiment of the present disclosure relates to a method for random access in a base station supporting communication with at least one CE-MTC UE. The method comprises: receiving from a user equipment, repetition transmissions of a first message including a random access preamble; repeatedly transmitting to the user equipment a second message including a random access response, RAR, wherein the second message has a characteristic dependent upon a first repetition level. Another embodiment of the present invention also relates to corresponding method for random access in a user equipment. According to an aspect of the present disclosure, there are provided corresponding devices.
Abstract:
Embodiments of the present disclosure provide a method and apparatus for transmitting uplink grant, the method comprising: transmitting the uplink grant by selecting a downlink subframe from a plurality of candidate downlink subframes each of the plurality of downlink subframes enabling scheduling of at least one user equipment to start transmitting burst data in a uplink subframe.
Abstract:
A transmitting device performs a channel assessment in a previous sub-frame in an unlicensed carrier. After a successful channel assessment, the transmitting device starts a data transmission. The transmitting device transmits a control message for indicating the data transmission in (E)PDCCH. The control message may include the starting time of the data transmission and/or at least one transmission characteristic in the previous sub-frame. The transmission device may transmit an initial control message for indicating a potential data transmission being started in the sub-frame in which the initial control message is transmitting. Method and apparatus enable (E)CCA to take place at any time, and data transmission to start earlier than the next sub-frame boundary after a successful completion of (E)CCA, thus improving the data transmission capacity, especially in circumstances when the maximum length of transmission is constrained.
Abstract:
The present invention relates to a method and an apparatus for implementing Listen-Before-Talk. According to an embodiment of the present invention, if the channel assessment does not stop at a boundary of the first symbol, the preamble comprises at least a first part, and if the channel assessment stops at the boundary of the first symbol, the preamble comprises a second part. And the first part is transmitted on a remaining portion of the first symbol until the end of the first symbol, and the second part is transmitted on at least one symbol following the first symbol. Besides, the data is transmitted to the receiving device in at least one symbol in the subframe in which the preamble transmission ends.
Abstract:
The present invention provides a method of triggering a LBT random backoff mechanism in LTE LAA, the method comprising: evaluating a current channel to obtain a first parameter characterizing a congestion state of the current channel; comparing the first parameter with a first threshold to obtain a first comparison result; and adapting a contention window size based on the first comparison result. The method further comprises comparing the first parameter with a second threshold to obtain a second comparison result; and adapting the contention window size based on the second comparison result. The first parameter is a packet error rate metric or a collision metric. The method inventively uses the comparison between a first parameter characterizing a congestion state of the current channel and a predefined threshold to increase or decrease the contention window size correspondingly, such that not only the fairness problem with other Systems, a WiFi System, for example, is guaranteed, the usage efficiency of the communication resource and the performance of the whole wireless communication System will be also enhanced.
Abstract:
In one embodiment, the method of configuring a common search space (CSS) for at least one user equipment (UE) in a wireless communication system with at least a first type of physical downlink control channel includes broadcasting at least one parameter of a common search space (CSS), none of the parameters being the number of orthogonal frequency-division multiplex (OFDM) symbols. In one embodiment, a method of configuring a default user equipment-specific search space (USS) for a user equipment (UE) in a wireless communication system with at least a first type of physical downlink control channel includes broadcasting at least one parameter of the default USS, none of the parameters being based on an identifier of the UE. The broadcasting may occur before UE-specific signaling. In one embodiment, a method of configuring or reconfiguring the USS may include transmitting at least one parameter of the USS with UE-specific signaling.
Abstract:
A method and apparatus for random access are provided in the present invention. According to an embodiment of the present invention, a base station configures multiple preamble groups and configures at least one preamble for the respective preamble group according to a predetermined condition; broadcasts preamble configuration information to the respective user equipment, the preamble configuration information including the information associated with the respective preamble group; the user equipment selects the corresponding preamble group according to the received preamble configuration information and the communication bandwidth supported by the user equipment itself, and selects a preamble from the selected preamble group randomly and transmits it to the base station; the base station determines the communication bandwidth supported by the user equipment according to the received preamble; the base station proceeds the further communication with the user equipment within the communication bandwidth supported by the user equipment. Through the method, in the case of a wide system bandwidth, the communication of the narrow band user equipment can also be supported simply and efficiently, thus the application of the narrow band user equipment has been improved.