Abstract:
Continuous additive manufacturing apparatuses are provided. An apparatus includes an actinic radiation-transparent substrate having a major surface and an irradiation source configured to direct actinic radiation through the actinic radiation-transparent substrate at predetermined dosages at predetermined locations. The apparatus further includes a means for depositing a composition onto the major surface of the actinic radiation-transparent substrate and a means for conveying the actinic radiation-transparent substrate or the irradiation source with respect to each other.
Abstract:
A continuous method of manufacturing adhesives is provided. The method includes obtaining an actinic radiation-polymerizable adhesive precursor composition disposed on a major surface of an actinic radiation-transparent substrate and irradiating a first portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate for a first irradiation dosage. The method further includes moving the actinic radiation-transparent substrate and irradiating a second portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate for a second irradiation dosage. Optionally, the method also includes irradiating a third portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate prior to moving the substrate. The first irradiation dosage and the third irradiation dosage are often not the same, thereby forming an integral adhesive having a variable thickness in an axis normal to the actinic radiation-transparent substrate.
Abstract:
The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. An abrasive article preform is produced by an additive manufacturing sub-process comprising the deposition of a layer of loose powder particles in a confined region and selective heating via conduction or irradiation to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The abrasive article preform produced by additive manufacturing is subsequently heated to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. Also, the methods include receiving, by an additive manufacturing device having a processor, a digital object specifying data for an abrasive article, and generating the abrasive article with the manufacturing device.
Abstract:
The present invention relates to printed hook components for hook and loop mechanical fasteners, and other components such as on diaper chassis and other personal hygiene articles, and methods for making the same. The hook component comprises an organic polymer, a laser-sensitive agent, and a laser-induced print on the hook component created by the interaction of electromagnetic radiation with the laser-sensitive agent. The hook component can be used in a variety of applications, including mechanical fastening devices for personal hygiene articles such as diapers, adult incontinence pads, and medical gowns.
Abstract:
Methods of making metal bond abrasive articles via powder bed jetting are disclosed. Metal bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
Abstract:
Metal bond abrasive articles and methods of making metal bond abrasive articles via a focused beam are disclosed. In an aspect, a metal bond abrasive article includes a metallic binder material having abrasive particles retained therein, where the abrasive particles have at least one coating disposed thereon. The coating includes a metal, a metal oxide, a metal carbide, a metal nitride, a metalloid, or combinations thereof, and the at least one coating has an average thickness of 0.5 micrometers or greater. The metal bond abrasive article includes a number of layers directly bonded to each other. Metal bond abrasive articles prepared by the method can include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a metal bond abrasive article; and generating, with the manufacturing device by an additive manufacturing process, the metal bond abrasive article based on the digital object. A system is also provided, including a display that displays a 3D model of a metal bond abrasive article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of the metal bond abrasive article.
Abstract:
The inventors of the present application developed novel optically active materials, methods, and articles. One embodiment of the present application is an optically active article, comprising: an infrared-reflecting material positioned adjacent to an optically active substrate such that the infrared-reflecting material forms a pattern that can be read by an infrared sensor when the optically active substrate is illuminated by an infrared light source. Another embodiment of the present application relates to a method of manufacturing an optically active article, comprising: obtaining an optically active sheeting; and positioning an infrared-reflecting material on the optically active sheeting to form a pattern. The optically active article may be, for example, a license plate.