Abstract:
Catalyst compositions and processes for the polymerization of ethylenically unsaturated monomers to produce polymers specific to the polymerization of propylene to produce isotactic polypropylene and copolymer, specifically an ethylene-propylene copolymer. An olefin polymerization catalyst is characterized by the formula: B(FluA)MQn wherein Flu is a fluorenyl group substituted at the 4(5) position by a bulky hydrocarbyl group having at least 3 carbon atoms, A is a substituted or unsubstituted cyclopentadienyl or indenyl group or a heteroorgano group, XR, in which X is a heteroatom from Group 15 or 16 such as nitrogen. R is an alkyl group or cycloalkyl group or a mononuclear aromatic group which may be substituted or unsubstituted. B is a structural bridge which imparts stereorigidity to the ligand structure. The bridge B is characterized by the formula ER′R″, in which E is a carbon, silicon or germanium atom, and R′ and R″ are each independently an alkyl group, an aromatic group or a cycloalkyl group. M is a Group 4 or Group 5 transition metal such as titanium, zirconium or hafnium. Q is chlorine, bromine, iodine, an alkyl group, an amino group or an aromatic group. n is 1 or 2. The fluorenyl group may be substituted at both of the 4 or 5 positions with a bulky hydrocarbyl group containing at least 3 carbon atoms. A may take the form of an indenyl group which is substituted or unsubstituted, or a cyclopentadienyl group which is substituted at the 3 or the 3 and 5 positions. The fluorenyl group may be mono-substituted at the 4 (or 5) position and is otherwise unsubstituted or is di-substituted at the 2,7 positions with alkyl or phenyl or substituted phenyl groups.
Abstract:
Methods of forming supported catalyst systems, supported catalyst systems and polymerization processes utilizing supported catalyst systems are described. The methods include providing an inorganic support material, contacting the inorganic support material with a support solvent to form a support solution, and contacting the support solution with a fluorine containing compound (AlFpX3−pBq) to form an intermediate. X is Cl, Br or OFF, B is H2O, p is from 1 to 3 and q is 0 to 6. The methods include drying and heating the intermediate to at least about 300° C. to form an impregnated support and contacting the impregnated support with a transition metal compound ([L]mM[A]n) to form a supported catalyst system. L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract:
Catalyst compositions and processes for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. The polymerization catalyst characterized by the formula B(FluL)MQn in which Flu is a fluorenyl group substituted at least the 2,7- and 3,6-positions by hydrocarbyl groups. L is a substituted or unsubstituted cyclopentadienyl, indenyl or fluorenyl group or a heteroorgano group, XR, in which X is a heteroatom from Group 15 or 16 of the Periodic Table of Elements, R is an alkyl group, a cycloalkyl group or an aryl group and B is a structural bridge extending between the groups L and Flu, M is a Group 4 or Group 5 transition metal, such as titanium, zirconium or hafnium and Q is selected from the group consisting of chlorine, bromine, iodine, an alkyl group, an amino group, an aromatic group and mixtures thereof, with n being 1 or 2.
Abstract:
Supported catalyst systems and methods of forming polymers are generally described herein. The polymerization processes generally include contacting an inorganic support composition with a fluorinating agent to form a fluorinated support, wherein the fluorinating agent includes an organofluorine compound having the formula R4nAlF3-n and wherein each R is independently selected from alkyls, aryls and combinations thereof and n is 1 or 2, contacting the fluorinated support with a transition metal compound to form a supported catalyst system and contacting an olefin monomer with the supported catalyst composition to form a polyolefin.
Abstract:
Olefin polymerization catalyst precursors are described herein. The precursors are generally characterized by the formula: wherein M is a transition metal selected from groups 8 to 10 of the Periodic Table; n is an integer of from 1 to 3; Q is a halogen or a C1 to C2 alkyl group; PY is a pyridinyl group, which is coordinated with M through the nitrogen atom of said pyridinyl group; R′ is a C1 to C20 hydrocarbyl group; R″ is a C1 to C20 hydrocarbyl group; A1 is a monoaromatic group, which is substituted or unsubstituted; and A2 includes multiple aromatic groups, which are substituted or unsubstituted.
Abstract:
A catalyst system having the following formula is described herein. wherein M is a metal; each X is an atom or group banded to M and may be the same or different; R1 and R2 may be the same or each may be different and are substituted or unsubstituted cyclopentadienyl or aromatic groups; RB is a structural bridge between R1 and R2 imparting stereorigidity thereto and including at least one heteroatom bonded to M, with each of R1 and R2 bonded to the same or different heteroatom of RB which heteroatom is also bonded to M; Z is the coordination number of M and is greater than or equal to 4 and m is the number of bonds between M and heteroatoms of RB.
Abstract translation:本文描述了具有下式的催化剂体系。 其中M是金属; 每个X是与M相连的原子或基团,可以相同或不同; R 1和R 2可以相同或各自可以不同,并且是取代或未取代的环戊二烯基或芳族基团; R B是赋予其立体刚性的R 1和R 2之间的结构桥,并且包括至少一个与M键合的杂原子,每个R R 1和R 2结合到相同或不同的R B的杂原子上,该杂原子也与M键合; Z是M的配位数并且大于或等于4,m是M和R B的杂原子之间的键的数目。
Abstract:
Ethylene polymerization processes employing bis-imino pyridinyl transition metal components which exhibit C2, C2v or Cs symmetry. Catalyst components of the same or different symmetries may be employed to control polymerization characteristics and characteristics of the resulting polymer products such as polymer yield and polymer molecular weight. The transition metal catalyst component is characterized by the formula: wherein M is a Group 4-11 transition metal, n is an integer within the range of 1-3, Q is a halogen or a C1-C2 alkyl group, and PY is a pyridinyl group which is coordinated with M through the nitrogen atom of the pyridinyl group. Further, with respect to formula (I), A is a methyl group, a phenyl group, or a substituted phenyl group and B, and B2 are the same or different aromatic groups depending on the symmetry of the catalyst component. The catalyst component and an activating co-catalyst component are contacted with ethylene in a polymerization reaction zone which is free of hydrogen or contains hydrogen in an amount which is less than 5 mole % of the ethylene under polymerization conditions to produce a polymer product which can be a ethylene homopolymer or a copolymer of ethylene and C3+ alpha olefin, specifically an ethylene-propylene copolymer.
Abstract:
Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH−, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract:
Methods for the preparation of fluorenyl-type ligand structures and substituted fluorenyl groups which may be employed in metallocene-type olefin polymerization catalysts. There is provided a 2,2′-dihalogen-diphenylmethylene having a methylene bridge connecting a pair of phenyl groups. Each phenyl group has a halogen on a proximal carbon atom relative to the methylene bridge. The halogenated diphenylmethylene is reacted with a coupling agent comprising a Group 2 or 12 transition metal in the presence of a nickel or palladium-based catalyst to remove the halogen atoms from the phenyl groups and couple the phenyl groups at the proximal carbon atoms to produce a fluorene ligand structure. The coupling agent may be zinc, cadmium or magnesium and the catalyst may be a monophosphene nickel complex. The halogenated diphenylmethylene may be an unsubstituted ligand structure or a monosubstituted or disubstituted ligand structure. The halogenated diphenylmethylene may be monosubstituted with a tertiary butyl group or may be a dialkyl diphenylmethylene having alkyl substituents at the directly distal positions of the phenyl groups relative to the methylene bridge.
Abstract:
An olefin polymerization process comprising contacting one or more olefins and a catalyst component in a reaction zone under suitable reaction conditions to form a polyolefin, wherein the catalyst component is characterized by the formula: B(Cp)(Fl)MQ2 wherein M comprises a metal, Q comprises a halogen, an alkyl group or an aryl group or combinations thereof, Cp comprises a cyclopentadienyl group, Fl comprises a fluorenyl group, B is a bridging group that may be characterized by the general formula —YRH wherein Y comprises C or Si and R comprises an alkyl group, an aryl group, a poly-aryl group or combinations thereof.