Abstract:
Catalyst compositions having Cs symmetry and processes utilizing Cs symmetric catalyst components for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The catalyst component is characterized by the formula: wherein M is a Group 4-11 transition metal, n is an integer of from 1-3, Q is halogen or a C1-C2 alkyl group, PY is a pyridinyl group, R′ and R″ are each C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, and A2 is a polynuclear aromatic group, such as a terphenyl group. The catalyst component is used with an activating co-catalyst component such as an alumoxane. Also disclosed is a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component.
Abstract:
Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH−, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract:
Methods of forming supported catalyst systems, supported catalyst systems and polymerization processes utilizing the supported catalyst systems are described herein. The methods generally include providing an inorganic support material and contacting the inorganic support material with a support solvent to form a support solution. The methods further include contacting the support solution with a fluorine containing compound represented by the formula AlFpX3-pBq to impregnate the fluorine containing compound within the inorganic support material and form an intermediate, wherein X is selected from Cl, Br and OH−, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. In addition, the methods include drying the intermediate to remove the solvent therefrom and heating the intermediate at a temperature of at least about 300° C. to form an impregnated support and contacting the impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract translation:在此描述形成负载型催化剂体系的方法,负载型催化剂体系和利用负载型催化剂体系的聚合方法。 所述方法通常包括提供无机载体材料并使无机载体材料与支持溶剂接触以形成支持溶液。 所述方法还包括将载体溶液与由式AlFpX3-pBq表示的含氟化合物接触以在无机载体材料中浸渍含氟化合物并形成中间体,其中X选自Cl,Br和OH-,B为 H 2 O,p选自1至3,q选自0至6.此外,所述方法包括干燥中间体以除去溶剂,并在至少约300℃的温度下加热中间体以形成 浸渍的载体并使浸渍的载体与过渡金属化合物接触以形成负载型催化剂体系,其中过渡金属化合物由式[L] mM [A] n表示; 其中L是大体积配体,A是离去基团,M是过渡金属,m和n使总配体的化合价对应于过渡金属的价态。
Abstract:
Methods of forming supported catalyst systems, supported catalyst systems and polymerization processes utilizing the supported catalyst systems are described herein. The methods generally include providing an inorganic support material and contacting the inorganic support material with a support solvent to form a support solution. The methods further include contacting the support solution with a fluorine containing compound represented by the formula AlFpX3−pBq to impregnate the fluorine containing compound within the inorganic support material and form an intermediate, wherein X is selected from Cl, Br and OH−, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. In addition, the methods include drying the intermediate to remove the solvent therefrom and heating the intermediate at a temperature of at least about 300° C. to form an impregnated support and contacting the impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract translation:在此描述形成负载型催化剂体系的方法,负载型催化剂体系和利用负载型催化剂体系的聚合方法。 所述方法通常包括提供无机载体材料并使无机载体材料与支持溶剂接触以形成支持溶液。 所述方法还包括将载体溶液与由式AlFpX3-pBq表示的含氟化合物接触以在无机载体材料中浸渍含氟化合物并形成中间体,其中X选自Cl,Br和OH-,B为 H 2 O,p选自1至3,q选自0至6.此外,所述方法包括干燥中间体以除去溶剂,并在至少约300℃的温度下加热中间体以形成 浸渍的载体并使浸渍的载体与过渡金属化合物接触以形成负载型催化剂体系,其中过渡金属化合物由式[L] mM [A] n表示; 其中L是大体积配体,A是离去基团,M是过渡金属,m和n使总配体的化合价对应于过渡金属的价态。
Abstract:
Catalyst compositions and processes for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Such monomers include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The polymerization catalyst characterized by the formula B(FluL)MQn in which Flu is a fluorenyl group substituted at at least the 2,7- and 3,6-positions by hydrocarbyl groups, preferably relatively bulky hydrocarbyl groups. L is a substituted or unsubstituted cyclopentadienyl, indenyl or fluorenyl group or a heteroorgano group, XR, in which X is a heteroatom from Group 15 or 16 of the Periodic Table of Elements, such as nitrogen, R is an alkyl group, a cycloalkyl group or an aryl group and B is a structural bridge extending between the groups L and Flu, which imparts stereorigidity to the ligand structure, M is a Group 4 or Group 5 transition metal, such as titanium, zirconium or hafnium and Q is selected from the group consisting of chlorine, bromine, iodine, an alkyl group, an amino group, an aromatic group and mixtures thereof, with n being 1 or 2.
Abstract:
An olefin polymerization process comprising contacting one or more olefins and a catalyst component in a reaction zone under suitable reaction conditions to form a polyolefin, wherein the catalyst component is characterized by the formula: B(Cp)(Fl)MQ2 wherein M comprises a metal, Q comprises a halogen, an alkyl group or an aryl group or combinations thereof, Cp comprises a cyclopentadienyl group, Fl comprises a fluorenyl group, B is a bridging group that may be characterized by the general formula —YRH wherein Y comprises C or Si and R comprises an alkyl group, an aryl group, a poly-aryl group or combinations thereof.
Abstract:
Supported catalyst systems and methods of forming the same are generally described herein. The methods generally include providing an inorganic support composition, wherein the inorganic support composition includes a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof and contacting the inorganic support composition with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract translation:载体催化剂体系及其形成方法一般在此描述。 所述方法通常包括提供无机载体组合物,其中所述无机载体组合物包括选自Si-O-Al-F,F-Si-O-Al,F-Si-O-Al-F及其组合的键合序列, 使无机载体组合物与过渡金属化合物接触以形成负载型催化剂体系,其中过渡金属化合物由式[L] M [A] ; 其中L是大体积配体,A是离去基团,M是过渡金属,m和n使总配体的化合价对应于过渡金属的价态。
Abstract:
In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A′ and A″ are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
Abstract:
A process for the preparation of a tridentate transition metal catalyst components incorporating pyridinyl bis-amino or monoamino ligand structures which do not require π bonding of the transition metal through the use of cyclopentadienyl rings. The ligand structure incorporates a heteroatom group that involves nitrogen in one organogroup and either oxygen or nitrogen in another organogroup. The process of preparing the catalyst component involves the reaction of a bis-amino or oxyamino pyridenyl ligand compound with an organo transition metal compound involving a tetrabenzyl ligand or other functional group ligands linked to a transition metal such as titanium zirconium or hafnium.
Abstract:
Methods for the preparation of fluorenyl-type ligand structures and substituted fluorenyl groups which may be employed in metallocene-type olefin polymerization catalysts. There is provided a 2,2′-dihalogen-diphenylmethylene having a methylene bridge connecting a pair of phenyl groups. Each phenyl group has a halogen on a proximal carbon atom relative to the methylene bridge. The halogenated diphenylmethylene is reacted with a coupling agent comprising a Group 2 or 12 transition metal in the presence of a nickel or palladium-based catalyst to remove the halogen atoms from the phenyl groups and couple the phenyl groups at the proximal carbon atoms to produce a fluorene ligand structure. The coupling agent may be zinc, cadmium or magnesium and the catalyst may be a monophosphene nickel complex. The halogenated diphenylmethylene may be an unsubstituted ligand structure or a monosubstituted or disubstituted ligand structure. The halogenated diphenylmethylene may be monosubstituted with a tertiary butyl group or may be a dialkyl diphenylmethylene having alkyl substituents at the directly distal positions of the phenyl groups relative to the methylene bridge.