Abstract:
Techniques to configure quality of service (QoS) and utilize radio resources for a call in a WLAN are described. In an aspect, a station ensures that an access point in the WLAN is suitable for receiving service prior to performing registration to receive services via the WLAN. In another aspect, the station first requests for radio resources for traffic flows, then requests for radio resources for signaling flows, and sends signaling as best effort traffic if radio resources are not granted for the signaling flows. In yet another aspect, the station aggregates QoS for multiple applications and requests for radio resources based on the aggregated QoS. In yet another aspect, the station releases extra radio resources corresponding to the difference between the QoS granted by the WLAN and the QoS proposed by a remote terminal for the call. In yet another aspect, the station requests for the same QoS or lower from a new access point during handoff.
Abstract:
A wireless communications device is configured to establish a radio level session with a network at a relatively high or highest protocol level among a plurality of protocol levels supported. Upon failures in establishing, or during, a network level data session, the radio level session is closed. Thereafter, the device re-attempts to establish the network level session at a lower, fallback protocol level, by pretending it is a legacy device incapable of supporting the high protocol level. In this manner, the network is likely to follow a different procedure in establishing data communications, whereby an error that caused the failure is less likely to be repeated. As examples, error conditions in eHRPD data sessions result in fallback to HRPD or 1xRTT data sessions. A network based alternative embodiment implements protocol fallback via appropriate fallback instructions to the wireless device.
Abstract:
Methods and apparatuses are provided that include enhancing decoding of multicast broadcast control communications, which can be of a relatively large size. A configuration message related to a broadcast channel structure can be received in multiple instances and/or segmented data units. A receiver can combine multiple instances and/or accumulate segmented data units to obtain and/or decode a control channel over which the configuration message is communicated. Communicating segmented data units of the configuration message can allow a broadcast station to utilize a lower data rate, more reliable modulation and coding scheme to encode the configuration message.
Abstract:
Efficient frequency assignment for mobile terminals in coexisting wireless communication systems is described herein. The coexisting wireless communication systems comprise a macro communication system and a localized communication system. Two prioritized lists are defined, a first list comprising a first entry relating to the macro communication system and the second entry relating to the localized communication system, the first and second entries each listing at least one common frequency. Based on the first list, a mobile terminal uses communication protocols associated with the localized communication system.
Abstract:
Systems and methodologies are described herein that facilitate improved cell search and selection in a wireless communication system. For example, a terminal as described herein can utilize one or more Closed Subscriber Group (CSG)-specific offset and/or hysteresis parameters as described herein to increase the amount of time on which the terminal is allowed to camp on a desirable cell. Additionally, specialized reselection timing can be employed as described herein to increase a delay associated with selecting a Home Node B (HNB) or Home Evolved Node B (HeNB) cell, thereby reducing power consumption associated with rapid cell reselection operations in a densely populated network environment. Further, a two-step reselection process can be performed as described herein in the context of selecting a frequency for cell reselection, thereby mitigating the effects of rapid reselection between cells and/or frequencies due to CSG cell prioritization.
Abstract:
When a user equipment engaged in mobile communications transfers from a network with one radio access technology (RAT) to another network with a different radio access technology, maintaining continuity of location based services can improve system performance. A user equipment may perform a series of checks when undergoing inter-RAT transfer to determine if a location based services protocol used with the source network is operable on the target network. The UE also determines if location based services sessions are at a point where they can be continued following inter-RAT transfer. Where possible, protocols and sessions are maintained to preserve location based services continuity.
Abstract:
Aspects disclosed herein relate to avoiding a better system reselection (BSR) procedure when no 3GPP (e.g., LTE based) network is available. In one example, a network entity may be equipped to determine that a geographic region (GEO) includes one or more cells that provide 3GPP coverage, and provision multi-mode system selection (MMSS) files to distinguish the GEO than includes one or more cells that support 3GPP coverage from one or more GEOs that do not include 3GPP coverage. Further, a user equipment (UE) may be equipped to detect initiation of a BSR procedure for a multimode UE currently being served by a 3GPP2 based network, and determine whether to scan for a 3GPP based network based on one or more MMSS files.
Abstract:
Techniques to detect for end of service using dynamic inactivity timer thresholds are described. An access terminal establishes a radio connection for one or more applications. Data and signaling for the application(s) may be sent on one or more first flows (e.g., RLP flows) that may carry any number of second flows (e.g., IP flows). The access terminal determines a dynamic inactivity timer threshold for each first flow, e.g., based on at least one inactivity timer threshold for at least one second flow mapped to that first flow. The access terminal determines whether each first flow is inactive based on the inactivity timer threshold for that first flow, e.g., declares each first flow to be inactive if no activity is detected on that first flow for a period exceeding the inactivity timer threshold. The access terminal closes the radio connection when all first flow(s) are determined to be inactive.
Abstract:
Certain aspects of the present disclosure propose methods and apparatuses for reducing power consumption associated with performing reselection between radio access technologies (RATs). For example, a network that supports first and second RATs may obtain a list of neighbor base stations of a third RAT and determine whether to transmit the neighbor list on the first RAT, the second RAT, or both. In another aspect, a user equipment (UE) may combine information from the neighbor lists received from the first and the second RATs, and decide whether to take measurements in the third RAT based on the combined information. The UE may also maintain a central entity with measurements taken in the third RAT based on the neighbor lists received from the first and the second RATs and decide whether to perform cell reselection based on measurements in the central entity.
Abstract:
Methods, apparatus, and computer-readable media for management and arbitration of dedicated mobile communication resources for mobile applications are provided. Mobile applications can be given a priority level that establishes an importance with respect to one or more other mobile applications and at least one mobile resource. If competing applications attempt to access the mobile resource concurrently, access can be provided to an application having higher priority level. Furthermore, control of a resource can be taken away from an application having lower priority in order to affect control of such resource for a higher priority application. In one aspect, a privilege code of an application can be verified prior to establishing control of the resource for the application, to mitigate a likelihood of inappropriate transfer of resources. Accordingly, the subject disclosure provides for management of dedicated resources for a mobile processing environment to effect important device functions with minimum delay.