摘要:
A compilation system using an energy model based on a set of generic and practical hardware and software parameters is presented. The model can represent the major trends in energy consumption spanning potential hardware configurations using only parameters available at compilation time. Experimental verification indicates that the model is nimble yet sufficiently precise, allowing efficient selection of one or more parameters of a target computing system so as to minimize power/energy consumption of a program while achieving other performance related goals. A voltage and/or frequency optimization and selection is presented which can determine an efficient dynamic hardware configuration schedule at compilation time. In various embodiments, the configuration schedule is chosen based on its predicted effect on energy consumption. A concurrency throttling technique based on the energy model can exploit the power-gating features exposed by the target computing system to increase the energy efficiency of programs.
摘要:
A multiresolution parser (MRP) can selectively extract one or more information units from a dataset based on the available processing capacity and/or the arrival rate of the dataset. Should any of these parameters change, the MRP can adaptively change the information units to be extracted such that the benefit or value of the extracted information is maximized while minimizing the cost of extraction. This tradeoff is facilitated, at least in part, by an analysis of the spectral energy of the datasets expected to be processed by the MRP. The MRP can also determine its state after a processing iteration and use that state information in subsequent iterations to minimize the required computations in such subsequent iterations, so as to improve processing efficiency.
摘要:
A compilation system can apply a smoothness constraint to the arguments of a compute-bound function invoked in a software program, to ensure that the value(s) of one or more function arguments are within specified respective threshold(s) from selected nominal value(s). If the constraint is satisfied, the function invocation is replaced with an approximation thereof. The smoothness constraint may be determined for a range of value(s) of function argument(s) so as to determine a neighborhood within which the function can be replaced with an approximation thereof. The replacement of the function with an approximation thereof can facilitate simultaneous optimization of computation accuracy, performance, and energy/power consumption.
摘要:
A compilation system can compile a program to be executed using an event driven tasks (EDT) system that requires knowledge of dependencies between program statement instances, and generate the required dependencies efficiently when a tiling transformation is applied. To this end, the system may use pre-tiling dependencies and can derive post-tiling dependencies via an analysis of the tiling to be applied.
摘要:
Methods, apparatus and computer software product for source code optimization are provided. In an exemplary embodiment, a first custom computing apparatus is used to optimize the execution of source code on a second computing apparatus. In this embodiment, the first custom computing apparatus contains a memory, a storage medium and at least one processor with at least one multi-stage execution unit. The second computing apparatus contains at least one local memory unit that allows for data reuse opportunities. The first custom computing apparatus optimizes the code for reduced communication execution on the second computing apparatus. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
摘要:
A signal pre-compensation system analyzes one or more properties of a communication medium and, taking advantage of the locality of propagation, generates using sparse fast Fourier transform (sFFT) a sparse kernel based on the medium properties. The system models propagation of data signals through the medium as a fixed-point iteration based on the sparse kernel, and determines initial amplitudes for the data symbol(s) to be transmitted using different communication medium modes. Fixed-point iterations are performed using the sparse kernel to iteratively update the initial amplitudes. If the iterations converge, a subset of the finally updated amplitudes is used as launch amplitudes for the data symbol(s). The data symbol(s) can be modulated using these launch amplitudes such that upon propagation of the pre-compensated data symbol(s) through the communication medium, they would resemble the original data symbols at a receiver, despite any distortion and/or cross-mode interference in the communication medium.
摘要:
A system for allocation of one or more data structures used in a program across a number of processing units takes into account a memory access pattern of the data structure, and the amount of total memory available for duplication across the several processing units. Using these parameters duplication factors are determined for the one or more data structures such that the cost of remote communication is minimized when the data structures are duplicated according to the respective duplication factors while allowing parallel execution of the program.
摘要:
A system can generate and impose constraints on a compiler/scheduler so as to specifically minimize the footprints of one or more program variables. The constraints can be based on scopes of the variables and/or on dependence distances between statements specifying operations that use the one or more program variables.
摘要:
We present the architecture of a high-performance constraint solver R-Solve that extends the gains made in SAT performance over the past fifteen years on static decision problems to problems that require on-the-fly adaptation, solution space exploration and optimization. R-Solve facilitates collaborative parallel solving and provides an efficient system for unrestricted incremental solving via Smart Repair. R-Solve can address problems in dynamic planning and constrained optimization involving complex logical and arithmetic constraints.
摘要:
We present the architecture of a high-performance constraint solver R-Solve that extends the gains made in SAT performance over the past fifteen years on static decision problems to problems that require on-the-fly adaptation, solution space exploration and optimization. R-Solve facilitates collaborative parallel solving and provides an efficient system for unrestricted incremental solving via Smart Repair. R-Solve can address problems in dynamic planning and constrained optimization involving complex logical and arithmetic constraints.