Abstract:
An antenna radome is provided. The antenna radome comprises an antenna radome substrate and a unit cell. The unit cell is formed on a surface of the antenna radome substrate, and the unit cell is perpendicular to a magnetic field direction of an antenna.
Abstract:
A structure for adjusting electromagnetic wave (EM wave) penetration response includes a plurality of structure units and a dielectric substrate with an upper surface and a lower surface. The structure units are disposed on the upper surface and/or the lower surface. The structure unit consists of metal lines or complementary slits so as to enable an EM wave penetration response of the structure to include a pass band and a stop band. The frequency of the stop band is higher than that of the pass band. If a distance between the structure and an object with a high dielectric constant is longer than a predetermined distance, the pass band covers a radiation frequency of an antenna. If the distance between the structure and the object with the high dielectric constant is within the predetermined distance, the stop band covers the radiation frequency of the antenna.
Abstract:
A photovoltaic apparatus, through which an antenna is allowed to transmit and receive radio-frequency signals, includes a photovoltaic material and conducting electrodes. The photovoltaic material is used for converting photon energy into electrical energy, and the conducting electrodes collect and transfer the electrical energy generated by the photovoltaic material. The arrangement of the conducting electrodes forms a frequency selective surface placed in the transmitting or receiving path of the antenna. The frequency selective surface and the antenna have a spacing there between. The projection of the frequency selective surface in the transmitting or receiving path of the antenna covers the antenna.
Abstract:
A photovoltaic apparatus, through which an antenna is allowed to transmit and receive radio-frequency signals, includes a photovoltaic material and conducting electrodes. The photovoltaic material is used for converting photon energy into electrical energy, and the conducting electrodes collect and transfer the electrical energy generated by the photovoltaic material. The arrangement of the conducting electrodes forms a frequency selective surface placed in the transmitting or receiving path of the antenna. The frequency selective surface and the antenna have a spacing there between. The projection of the frequency selective surface in the transmitting or receiving path of the antenna covers the antenna.
Abstract:
A micro-electromechanical (MEM) process for fabrication of integrated multi-frequency communication passive components is fused into co-fired ceramics by way of “flip chip” for fabrication of a low-cost, high-performance, and high-reliability hybrid communication passive component applicable in the frequency range of 0.9 GHz˜100 GHz. The basic structure of the passive component is a double-layer substrate comprising a low-loss ceramic or glass bottom-layer substrate and a glass or plastic poly-molecular top-layer substrate and an optional ceramic substrate at the lowest layer. As the materials used and the processing temperature in the MEM process is compatible with the CMOS process, thus this invention is fit for serving as a post process following the CMOS process.
Abstract:
An electromagnetic transmission apparatus comprises a plurality of electromagnetic coupling elements, wherein each electromagnetic coupling element has at least one resonant structure. The plurality of electromagnetic coupling elements are arranged that when the electromagnetic transmission apparatus is operated within a specific frequency band, an electromagnetic coupling device near the electromagnetic transmission apparatus within an electromagnetic distance can electromagnetically couple with the electromagnetic transmission apparatus by near-field coupling, and the electromagnetic wave of the electromagnetically coupling propagates along with the arrangement direction of the plurality of electromagnetic coupling elements.
Abstract:
An antenna structure comprises a substrate having a first surface and a second surface, an array of conductor units positioned on the first surface and including at least two conductor units which are coupled, and at least one load metal sheet positioned on at least one of the first surface or the second surface. Each of the conductor units includes an intervening material with two conductors positioned on opposite surfaces of the intervening material.
Abstract:
A dielectric antenna includes at least one dielectric unit. Each dielectric unit is separated into a first region and a second region, and the second region could have a bending portion. A conductor covers a surface of the second region of the dielectric unit to form a waveguide structure. The waveguide structure has a first endpoint connected to the first region and a second endpoint serving as a signal feeding terminal for feeding or receiving signals.
Abstract:
According to an embodiment of the present invention, an electromagnetic radiation apparatus includes a ground plane and an integrally formed antenna structure. The integrally formed antenna structure may include a radiation plate perpendicular to or with an angle larger than 45 degrees to the ground plane and a shielding structure configured to restrict radiation of the radiation plate.
Abstract:
An antenna radome is provided. The antenna radome comprises an antenna radome substrate and a unit cell. The unit cell is formed on a surface of the antenna radome substrate, and the unit cell is perpendicular to a magnetic field direction of an antenna. The unit cell comprises a plurality of conductors.