摘要:
A leadless intra-cardiac medical device senses cardiac activity from multiple chambers and applies cardiac stimulation to at least one cardiac chamber and/or generates a cardiac diagnostic indication. The leadless device may be implanted in a local cardiac chamber (e.g., the right ventricle) and detect near-field signals from that chamber as well as far-field signals from an adjacent chamber (e.g., the right atrium).
摘要:
Techniques are provided for detecting and distinguishing stroke and cardiac ischemia based on electrocardiac signals. In one example, the device senses atrial and ventricular signals within the patient along a set of unipolar sensing vectors and identifies certain morphological features within the signals such as PR intervals, ST intervals, QT intervals, T-waves, etc. The device detects changes, if any, within the morphological features such as significant shifts in ST interval elevation or an inversion in T-wave shape, which are indicative of stroke or cardiac ischemia. By selectively comparing changes detected along different unipolar sensing vectors, the device distinguishes or discriminates stroke from cardiac ischemia within the patient. The discrimination may be corroborated using various physiological and hemodynamic parameters. In some examples, the device further identifies the location of the ischemia within the heart. In still other examples, the device detects cardiac ischemia occurring during stroke.
摘要:
A method and system for measuring a physiological parameter, comprising collecting a first absorbance at a first wavelength, chosen to be primarily absorbed by water; collecting a second absorbance at a second wavelength, chosen to be primarily absorbed by hemoglobin; and combining the first signal and the second signal to generate a combined plethysmograph signal which is proportionate lower in noise caused by motion-related interference.
摘要:
A sensor for pulse oximetry or other applications utilizing spectrophotometry may be adapted to reduce motion artifacts by fixing the optical distance between an emitter and detector. A flexible sensor is provided with a stiffening member to hold the emitter and detector of the sensor in a relatively fixed position when applied to a patient. Further, an annular or partially annular sensor is adapted to hold an emitter and detector of the sensor in a relatively fixed position when applied to a patient. A clip-style sensor is provided with a spacer that controls the distance between the emitter and detector.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure while a patient's heart is being paced. A signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from a paced cardiac event to one or more predetermined features of the signal indicative of changes in arterial blood volume. Based on at the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure. Electrode(s) implanting within and/or on the patient's heart are used to obtain a cardiogenic impedance (CI) signal indicative of cardiac contractile activity. Additionally, a signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from one of the detected features of the CI signal to one of the detected features of the signal indicative of changes in arterial blood volume. Based on at least one of the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
The present disclosure relates, in some embodiments, to devices, systems, and/or methods for collecting, processing, and/or displaying stroke volume and/or cardiac output data. For example, a device for assessing changes in cardiac output and/or stroke volume of a subject receiving airway support may comprise a processor; an airway sensor in communication with the processor, wherein the airway sensor is configured and arranged to sense pressure in the subject's airway, lungs, and/or intrapleural space over time; a blood volume sensor in communication with the processor, wherein the blood volume sensor is configured and arranged to sense pulsatile volume of blood in a tissue of the subject over time; and a display configured and arranged to display a representative of an airway pressure, a pulsatile blood volume, a photoplethysmogram, a photoplethysmogram ratio, the determined cardiac output and/or stroke volume, or combinations thereof. A method of assessing changes in cardiac output or stroke volume of a subject receiving airway support from a breathing assistance system may comprise sensing pressure in the subject's airway as a function of time, sensing pulsatile volume of blood in a tissue of the subject as a function of time, producing a photoplethysmogram from the sensed pulsatile volume, determining the ratio of the amplitude of the photoplethysmogram during inhalation to the amplitude of the photoplethysmogram during exhalation, and determining the change in cardiac output or stroke volume of the subject using the determined ratio.
摘要:
A system for implanting an implantable medical device (IMD) within a patient may include a main handle assembly having proximal and distal ends, a device-connection control handle connected to the proximal end of the main handle assembly, an introducer connected to the distal end of the main handle assembly, and a connection tool extending from the introducer. The connection tool may include a device-engaging member configured to change at least one of shape or orientation to selectively connect to and disconnect from the IMD. The device-connection control handle may be operatively connected to the device-engaging member and the device-connection control handle may be configured to manipulate the device-engaging member between connected and disconnected states by changing the at least one of the shape or orientation.
摘要:
The present invention provides methods for detecting phrenic nerve stimulation. A pacing module is instructed to deliver pacing pulses having a predetermined pulse amplitude and/or width within the refractory period of the left ventricle. The pacing pulses are repeatedly delivered during a number of cardiac cycles and wherein the pacing pulses are delivered at different delays relative to an onset of the refractory period of the left ventricle in different cardiac cycles. Impedance signals are measured in time windows synchronized with the delivery of pacing pulses in the refractory period of the left ventricle using at least one electrode configuration. At least one impedance signal is gathered from each time window, aggregated impedance signals are created using the impedance signals from the different time windows, and the aggregated impedance signals are analyzed to detect PNS.
摘要:
A device senses cardioelectrical signals using a right atrial (RA) lead, which might include far-field R-waves as well as near-field P-waves. The device concurrently senses events using a proximal electrode of an LV lead, which can sense both P-waves and R-waves as substantially near-field events. Suitable templates are then applied to the signals sensed via the proximal LV electrode to identify the origin of the signals (e.g. atrial vs. ventricular) so as to properly classify the corresponding events sensed in the RA as near-field or far-field events. In this manner, far-field oversensing is conveniently detected.