Abstract:
A method of magnetic resonance is provided that uses a frequency swept excitation wherein the acquired signal is a time domain signal is provided. In one embodiment, the method comprises, applying a sweeping frequency excitation and acquiring a time domain signal. The sweeping frequency excitation has a duration and is configured to sequentially excite isochromats having different resonant frequencies. Acquisition of the time domain signal is done during the duration of the sweeping frequency excitation. The time domain signal is based on evolution of the isochromats.
Abstract:
A method of magnetic resonance is provided that uses a frequency swept excitation wherein the acquired signal is a time domain signal is provided. In one embodiment, the method comprises, applying a sweeping frequency excitation and acquiring a time domain signal. The sweeping frequency excitation has a duration and is configured to sequentially excite isochromats having different resonant frequencies. Acquisition of the time domain signal is done during the duration of the sweeping frequency excitation. The time domain signal is based on evolution of the isochromats.
Abstract:
A cost effective digital image capture apparatus such as a digital camera that operates in both still mode and video mode, using a common programmable image processing chain and fixed optics. The full resolution of the image sensor (yielding raw image data) may be used in still mode, with adequate signal-to-noise ratio (SNR) achieved either from the scene ambient lighting or from supplemental light supplied by a strobe. In video mode, the apparatus may be configured to capture video image data by programming the parameters for image processing methodologies such as scaling, decorrelation, and encoding into a look-up table (LUT) which in turn configures logic circuitry to spatially scale and compress if necessary the raw image data in order to meet storage and transmission bandwidth constraints for video images. In video mode, adequate SNR may be achieved despite the lower light conditions, encountered, for example, during videoconferencing, by averaging pixels together during scaling.
Abstract:
Described here are systems and methods for magnetic resonance imaging (“MRI”) using a sweeping frequency excitation applied during a time-varying magnetic field gradient. As an example, a gradient-modulated offset independent adiabaticity (“GOIA”) approach can be used to modify the pattern of the sweeping frequency excitation. Data are acquired as time domain signals and processed to generate images. As an example, the time domain signals are processed using a correlation between a Fourier transform of the gradient-modulated sweeping frequency excitation and a Fourier transform of the time domain signals.
Abstract:
A method and apparatus for color calibrating an imager device is disclosed. The imager device is subjected to a plurality of light sources. Color channel responses are obtained from the imager device and the color calibrating coefficients are determined.