Abstract:
Apparatus and method for automatically coupling fluid systems and electrical systems, respectively, of a header and a feeder of an agricultural combine as the header is lifted by the feeder. The feeder and header include lifting elements pivotably engageable with lower portions of the feeder and header spaced apart, such that when the feeder is raised, the header will be lifted by the feeder and pivoted so as to bring the lower portions together. A first coupler block is supported on the feeder and includes at least one fluid coupler and at least one electrical contact, and a second coupler block is supported on the header and also includes at least one fluid coupler and at least one electrical contact. The fluid couplers and the electrical contacts are configured and positioned so as to couple and be brought into contact, respectively, as the lower portions of the feeder and the header are brought together. They can also automatically uncouple when the header is removed from the feeder.
Abstract:
A system and method for controlling spreader output from a harvester includes a distribution chamber for receiving an agricultural material removed from a field. The harvester includes a spreader system configured to distribute the agricultural material onto the field, and an opening configured to receive the agricultural material from the distribution chamber. Moreover, the distribution chamber includes a first panel rotatably coupled to a first side of the distribution chamber, and a second panel rotatably coupled to a second side of the distribution chamber. The first and second panels are configured to direct the agricultural material toward the opening of the spreader system. An angle of the first panel is independently adjustable to control a first amount of agricultural material directed toward a first inlet portion. An angle of the second panel is independently adjustable to control a second amount of agricultural material directed toward a second inlet portion.
Abstract:
An insertion tool for installing rotary chopper elements in integral chopper assemblies in combine harvesters, which insertion tool includes an elongated open-ended trough-like bed portion of a length, breadth, and depth to sufficiently accommodate the rotary chopper element therewithin, with lift brackets along the sides thereof configured to accommodate the prongs of lifting forks of a forklift. The rotary chopper element may be positioned to rest within the bed portion of the insertion tool for transport to adjacent to the access and installation window of a harvester and for slidable insertion by the insertion tool through such window for installation within the harvester.
Abstract:
A method and system for controlling distribution of crop material to a cleaning sieve of an agricultural combine, for reducing grain loss, including while the combine is tilted sidewardly relative to horizontal, involving controlling the angular orientation of a distributor disposed between a threshing system of the combine and the sieve, for distributing a mat of the crop material onto the sieve evenly across an extent thereof. The angular orientation of the distributor can be set in advance of tilting of the combine, to adjust for a variety of conditions, including uneven outputting of the crop material from the threshing system, and the set orientation can be automatically maintained or actively adjusted to control a desired operating parameter such as grain loss, even as the combine is variously tilted and the angular orientation of the sieve relative to the combine is independently adjusted to maintain the sieve horizontal.
Abstract:
A method and system for controlling distribution of crop material to a cleaning sieve of an agricultural combine, for reducing grain loss, including while the combine is tilted sidewardly relative to horizontal, involving controlling the angular orientation of a distributor disposed between a threshing system of the combine and the sieve, for distributing a mat of the crop material onto the sieve evenly across an extent thereof. The angular orientation of the distributor can be set in advance of tilting of the combine, to adjust for a variety of conditions, including uneven outputting of the crop material from the threshing system, and the set orientation can be automatically maintained or actively adjusted to control a desired operating parameter such as grain loss, even as the combine is variously tilted and the angular orientation of the sieve relative to the combine is independently adjusted to maintain the sieve horizontal.
Abstract:
An automatic coupling and latching assembly, for coupling a combine feeder and a combine header from the cab of a combine harvester, said assembly comprising a stationary gearbox with a telescopic jackshaft assembly extending therefrom, a shift fork activation unit, and comprising spring loaded retainers, is disclosed.
Abstract:
A rotor chopper assembly including a chopper rotor having a mounting lug. A knife blade includes a body having an opening arrangement configured to receive a retention device securing the body to a member that is rotatably connected to the mounting lug of the chopper rotor. During unobstructed operation of the rotor chopper assembly, the body is centrifugally urged radially outward from the mounting lug. In response to the body striking an obstruction during operation of the rotor chopper assembly, the body is urged into rotational movement until the retention device abuts a stop formed in the mounting lug. An angle subtended between axes defining unobstructed operation and stop abutment is different for at least two openings of the arrangement of openings formed in the body.
Abstract:
A knife bank assembly of a counter knife assembly of an integral chopper assembly of a combine harvester that includes an elongated bracket member that extends between opposed knife bank end plates and has a plurality of spaced retainment mounts securable therealong, with at least one, and preferably two, knife blades being removably connectable to each retainment mount in a side by side arrangement. The knife elements are removably connectable to the retainment mounts at first and second space mounting points, preferably in such a way that the knife elements are maintained in an extended position by application of a biasing force at the second mounting point but are rotatable about the first mounting point to a displaced or relaxed position if a sufficient force is applied to the leading edge of the knife element to overcome the biasing force.
Abstract:
A foreign object detection and removal system for an agricultural combine is provided. The system includes a controller operatively connected to a feederhouse and a chopper assembly. The feederhouse includes an acoustic element for detecting foreign objects and an actuator for opening and closing a door of the feederhouse to remove foreign objection. The chopper assembly includes an actuator to retract a knife bank to allow for the passage of foreign objects through the chopper assembly without causing damage to the chopper assembly.
Abstract:
A method for controlling distribution of crop material to a cleaning sieve of an agricultural combine, for reducing grain loss, including while the combine is tilted sidewardly relative to horizontal, involving controlling the angular orientation of a distributor disposed between a threshing system of the combine and the sieve, for distributing a mat of the crop material onto the sieve evenly across an extent thereof. The angular orientation of the distributor can be set in advance of tilting of the combine, to adjust for a variety of conditions, including uneven outputting of the crop material from the threshing system, and the set orientation can be automatically maintained or actively adjusted to control a desired operating parameter such as grain loss, even as the combine is variously tilted and the angular orientation of the sieve relative to the combine is independently adjusted to maintain the sieve horizontal.