Electronic Device Wide Band Antennas

    公开(公告)号:US20210096515A1

    公开(公告)日:2021-04-01

    申请号:US16584472

    申请日:2019-09-26

    Applicant: Apple Inc.

    Abstract: An electronic device such as a wristwatch device may have a housing with metal sidewalls and a display module having conductive display structures. The conductive display structures may be separated from the sidewalls by a slot element for a first antenna that runs around the display module. A feed element for the first antenna may be coupled between the display structures and the sidewalls. An antenna resonating element for a second antenna may be disposed within the slot element. A printed circuit may include additional antenna elements for the second antenna. The antenna resonating element may extend away from the feed element for the first antenna to provide improved isolation between the two antennas. The first antenna may be operable to provide coverage for frequencies that are lower than frequencies for which the second antenna may be operable to provide coverage.

    Electronic device with housing slots for antennas

    公开(公告)号:US10965008B2

    公开(公告)日:2021-03-30

    申请号:US16252311

    申请日:2019-01-18

    Applicant: Apple Inc.

    Abstract: An electronic device housing may have a rear housing wall that forms a metal ground plane. A slot may be formed in the metal ground plane. The slot may have one or more open ends along an edge of the ground plane. A near-field communications loop antenna may overlap the slot. The near-field communications loop antenna may have one or more turns. A current path through the metal ground plane may form one of the turns in the near-field communications loop antenna. The slot may form portions of non-near-field-communications antennas in addition to the near-field communications loop antenna. The slot in the non-near-field-communications antennas may be fed using an indirect antenna feed structure. Components such as a capacitor and inductor may help allow non-near-field communications antenna and the near-field communications antenna to be formed from common portions of the metal ground plane.

    Flexible Printed Circuit Structures for Electronic Device Antennas

    公开(公告)号:US20210075090A1

    公开(公告)日:2021-03-11

    申请号:US16563760

    申请日:2019-09-06

    Applicant: Apple Inc.

    Abstract: An electronic device may have peripheral conductive housing structures divided into first and second segments. First and second antennas may be formed from the segments and may be fed using a flexible printed circuit structure. The structure may include a first substrate attached to the first segment, a second substrate soldered to the first substrate and attached to the second segment, and a third substrate soldered to the second substrate. Third and fourth antennas may be formed on the first substrate whereas fifth and sixth antennas are be formed on the second substrate. The second substrate may be folded and may have a lateral area oriented perpendicular to the third, fourth, fifth, and sixth antennas. Modularly forming the structure in this way may maximize the flexibility with which the structure can accommodate other components, thereby minimizing the space consumption associated with mounting and feeding the antennas without sacrificing wireless performance.

    Electronic Devices Having Enclosure-Coupled Multi-Band Antenna Structures

    公开(公告)号:US20210066799A1

    公开(公告)日:2021-03-04

    申请号:US16553045

    申请日:2019-08-27

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a housing and an antenna having a resonating element. The resonating element may have first and second arms extending from opposing sides of a feed. The first arm and a portion of the housing may radiate in a cellular ultra-high band. The first arm may have a fundamental mode that radiates in a first ultra-wideband (UWB) communications band at 6.5 GHz. The second arm may have a fundamental mode that radiates in a 5.0 GHz wireless local area network band. The first and second arms may have a harmonic mode that radiates in a second UWB communications band at 8.0 GHz. The antenna may convey radio-frequency signals in each of these communications bands without the need for adjusting components in the antenna to switch between the UWB communications bands.

    Electronic devices with dielectric resonator antennas

    公开(公告)号:US10886619B2

    公开(公告)日:2021-01-05

    申请号:US16289433

    申请日:2019-02-28

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.

    Electronic devices with probe-fed dielectric resonator antennas

    公开(公告)号:US10886617B2

    公开(公告)日:2021-01-05

    申请号:US16289459

    申请日:2019-02-28

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.

    Electronic device antennas having split return paths

    公开(公告)号:US10854968B2

    公开(公告)日:2020-12-01

    申请号:US15701239

    申请日:2017-09-11

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. An antenna in the electronic device may have an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. A split return path may bridge the gap. The split return path may be coupled between a first point on the inverted-F antenna resonating element arm and second and third points on the antenna ground. The split return path may include a first inductor coupled between the first and second points and a second inductor coupled between the first and third points. The first and second inductors may be adjustable.

    Electronic devices having housing-integrated antennas

    公开(公告)号:US10854953B2

    公开(公告)日:2020-12-01

    申请号:US15717821

    申请日:2017-09-27

    Applicant: Apple Inc.

    Abstract: An electronic device may include a peripheral conductive housing sidewall with an integral ledge extending towards the device interior. A display cover layer may be supported by the integral ledge. A slot antenna may be formed from a slot in the integral ledge. The integral ledge may be mounted to a surface of a substrate and coupled to a conductive rear housing wall by a conductive layer extending over an additional surface of the substrate. The sidewall may include a vertical portion extending from the ledge to the rear wall. The slot antenna may be fed via near-field coupling using a conductive patch that is located within the slot at the surface of the substrate. The conductive layer, rear housing wall, and vertical portion may form a cavity for the slot antenna. The conductive layer may isolate the slot from interference with a battery, display circuitry, or other components.

Patent Agency Ranking