Abstract:
An image relay optical system is provided with an optical coupling member before incidence of image light on a light guide member. Among a first light incident surface, a coupling member reflecting surface, and a first light emitting surface provided in the optical coupling member, the coupling member reflecting surface and the first light emitting surface are curved surfaces. Therefore, a large bright virtual image with reduced aberration can be displayed.
Abstract:
A thickness of a tapered part provided at the deeper side (−X side) in a light guide direction of a light transmission member is smaller toward the deeper side, and thus, a reflection angle of ghost light that has passed through a fourth reflection surface provided with a half mirror layer and reached the light transmission member gradually becomes smaller within the tapered part and no longer satisfies a total reflection condition, and the light is ejected to the outside in the position diverging from an eye of an observer. That is, the tapered part may prevent the ghost light from reaching the eye and good see-through observation can be realized.
Abstract:
In regard to a second direction (combination direction) that is turned back by a reflection at the time of light-guiding, a projective optical system has an emission opening width larger than an opening width of a third reflective surface, such that it is possible to prevent a partial deficiency of image light when the image light emitted from the projective optical system is incident to the third reflective surface from occurring, and thereby it is possible to prevent the occurrence of deficiency of an image or a large variation in brightness.
Abstract:
The object of the present invention is to provide a method for cutting with gas which uses a cutting tip including a preheating hole for forming a preheating flame with a fuel gas and an oxygen gas for preheating, and an oxygen gas hole for cutting a workpiece by injecting oxygen gas for cutting, and which can decrease an amount of hydrogen gas used by supply a fuel gas to the preheating hole, which is appropriate in both heating and cutting the workpiece, and an apparatus for cutting with gas, and the present invention provides an apparatus for cutting with gas (30) which supplies an oxygen gas, and a fuel gas to a cutting tip (20) including a preheating hole (23) and an oxygen gas hole for cutting (22), wherein the apparatus (30) includes a supply circuit for oxygen gas (50), a supply circuit for hydrogen gas (41), a supply circuit for hydrocarbon-based gas (45), and a gas supply control means (60), and the gas supply control means (60) can alter a ratio of the hydrogen gas and the hydrocarbon-based gas which are supplied to the preheating hole in a case of heating the workpiece and a case of cutting the workpiece.
Abstract:
A battery pack has a secondary battery, first and second switch devices provided between the secondary battery and a load or a charging unit, a protection circuit detecting an overcharge, an overdischarge or an overcurrent of the secondary battery and controlling turning on and off of the first and second switch devices, a series circuit of a resistor and a thermistor disposed in the vicinity of the secondary battery and connected in parallel with the secondary battery, a comparator which compares a voltage at a connection point between the thermistor and the resistor with a reference voltage corresponding to a predetermined temperature inside the protection circuit, and a third switch device connected between the resistor and a negative electrode of the secondary battery. The protection circuit turns off the first switch device and the third switch device when an overdischarge of the secondary battery is detected.
Abstract:
An image reading device includes a light source; a light guiding member; an imaging optical system that reflects the light, which faces a first direction from the object, in a second direction intersecting the first direction by a reflective plane disposed in the first direction of the object, that makes the light, which is reflected by the reflective plane, converge toward the second direction by an emission portion disposed in the second direction of the reflective plane, and that images an erect equal-magnification image of the object in the second direction of the emission portion; and an optical sensor that is disposed in the second direction of the emission portion of the imaging optical system, and detects the erect equal-magnification image that is imaged by the imaging optical system, in which the light guiding member is disposed at an object side of the emission portion in the first direction.
Abstract:
An image display device includes: a laser light source having a plurality of emitting sections arrayed in a predetermined direction; and a light modulation device that includes an illumination region extending in a longitudinal direction and a lateral direction, and that modulates the laser lights emitted from the laser light source in accordance with an image signal. In the image display device, the predetermined direction in which the emitting sections are arrayed coincides with the longitudinal direction of the illumination region of the light modulation device.
Abstract:
An illumination device includes: a light source unit that emits coherent light; and a diffractive optical element that diffracts the coherent light emitted from the light source unit and makes the diffracted light travel to an illuminated surface. The diffractive optical element is disposed such that the coherent light is incident in a state of being inclined with respect to a perpendicular line of a reference plane on which the diffractive optical element is disposed. Zero-order light, which is light other than the diffracted light, of light components emitted from the diffractive optical element travels to a position other than the illuminated surface.
Abstract:
A light source device includes: a plurality of light emitting elements that emit laser light; and a wavelength selective element that includes a light selective region functioning as a resonator mirror of the light emitting element by selecting light of predetermined selective wavelength from the laser light emitted from one of the light emitting elements and reflecting the selected light toward the light emitting element while allowing the remaining laser light to pass therethrough, and a base member having a plurality of the light selective regions so that the wavelengths of the light selected by the light selective regions are different from each other.
Abstract:
A light source device includes: a plurality of light emitting elements that emit laser light; and a wavelength selective element that includes a light selective region functioning as a resonator mirror of the light emitting element by selecting light of predetermined selective wavelength from the laser light emitted from one of the light emitting elements and reflecting the selected light toward the light emitting element while allowing the remaining laser light to pass therethrough, and a base member having a plurality of the light selective regions so that the wavelengths of the light selected by the light selective regions are different from each other.