Abstract:
Disclosed are a method and an apparatus for transmitting a channel switching information. A method for transmitting switching information of an operating channel may comprises the step of: receiving a candidate channel frame including channel switch candidate information through the operating channel, and preferentially scanning a candidate operation channel induced based on the channel switch candidate information if the operating channel is changed, wherein the candidate operation channel may be a channel having a possibility of being preferentially selected when the operating channel is changed to another channel. As a result, when an access point (AP) shifts the operating channel, the shifted channel can be quickly scanned and associated with AP.
Abstract:
A method and apparatus are described for transmitting data. The method includes generating, by an access point (AP), a Physical Layer Protocol Data Unit (PPDU) including a signal field and a data field, and transmitting, by the AP, the PPDU to a station. The signal field includes a reception target indicator and an identifier field. The reception target indicator indicates whether a target of the PPDU is the AP or the station. The identifier field includes a local AP identifier identifying the AP when the reception target indicator indicates that the target of the PPDU is the station.
Abstract:
A method for a power save mode operation in a wireless local area network (WLAN) system is provided. The method comprising determining a type of a receiving station (STA) indicator on the basis of the number of STAs which are associated with the AP and which intend to transmit buffered traffic; generating a traffic indicator map (TIM) element including information which indicates the receiving STA indicator and the type of the receiving STA indicator, transmitting the TIM element, receiving a poll frame for requesting data frame transmission from one STA among the STAs and transmitting the data frame to the STA.
Abstract:
A method of performing a power save multi-poll (PSMP) procedure of a very high throughput (VHT) wireless local access network (WLAN) system using a bonding channel consisting of a plurality of subchannels is provided. Wherein the PSMP procedure comprises a PSMP frame transmission phase, a downlink phase, and an uplink phase, and wherein the PSMP frame comprises transmission time information indicating a time allocated to each station (STA) in each of the downlink phase and the uplink phase and transmission channel information corresponding to the transmission time information.
Abstract:
A method and apparatus are described for performing cipher communication in a wireless local area network system. A pseudo noise (PN) code sequence for a plaintext Medium Access Control (MAC) protocol data unit (MPDU) is obtained. An additional authentication data (AAD) is constructed by using at least one field in a header of the plaintext MPDU. A Nonce is constructed from the PN code sequence, an Address 2 field in the header of the plaintext MPDU and a Priority field in the header of the plaintext MPDU. A counter mode (CTR) is generated with cipher block chaining (CBC)-MAC Protocol (CCMP) header. Encrypted data and Message Integrity Code (MIC) are generated by using a temporal key, the AAD, and the Nonce. An encrypted MPDU is generated to be transmitted to a peer station by combining the plaintext MPDU header, the CCMP header, the encrypted data and the MIC.
Abstract:
A method for power saving in a wireless local area network. The method according to one embodiment includes acquiring, by a wireless device, a transmission opportunity (TXOP); and receiving a signal field from the transmitting device. A group identifier indicates recipients, a number indicator indicates spatial streams, and a power saving indicator indicates that the transmitting device is allowed to enter a doze state during the TXOP. The method according to the embodiment further includes determining, by the wireless device, whether a first condition or a second condition is satisfied. The first condition is satisfied if the power saving indicator indicates an allowance, the wireless device is a recipient indicated by the group identifier, and the number of spatial streams is equal to zero. The second condition is satisfied if the power saving indicator indicates an allowance, and the wireless device is not a recipient indicated by the group identifier.
Abstract:
A method for receiving data in a wireless local area network. The method includes establishing, by a destination station (STA), a direct link between a requesting STA and the destination STA; establishing, by the requesting STA, a relay link between the requesting STA and the destination STA; receiving, by the destination STA, data from the requesting STA through the direct link; and receiving, by the destination STA, the data from a relay STA of the relay link.
Abstract:
A method and device for receiving a data block in a wireless communication system, the method performed by a receiver. The method includes: receiving a physical layer protocol data unit (PPDU) from a transmitter over an operating channel, the PPDU including a signal field, a Very High Throughput-Signal-A (VHT-SIG-A) field, a Very High Throughput-Signal-B (VHT-SIG-B) field and a padded data block, generating a first data block by removing zero or more physical padding bits from the padded data block in a physical layer; and generating a second data block by removing zero or more Medium Access Control (MAC) padding bits from the first data block in a MAC layer.
Abstract:
According to one embodiment, a method for granting a transmission opportunity in a wireless local area network includes: transmitting a transmission opportunity (TXOP) granting frame to grant a TXOP to a plurality of target stations; and receiving a frame from each of the plurality of target stations that has acquired the TXOP upon receiving the TXOP granting frame.
Abstract:
Methods and devices for transmitting or receiving data in a wireless local area network are provided. The method in one embodiment includes transmitting, by a transmitter, a first long training field (LTF) to a receiver; transmitting, by the transmitter, a very high throughput (VHT)-SIG-A field to the receiver; transmitting, by the transmitter, a second LTF for multiple input multiple output (MIMO) channel estimation to the receiver; transmitting, by the transmitter, a VHT-SIG-B field to the receiver; and transmitting, by the transmitter, a data field to the receiver, wherein the first LTF, the VHT-SIG-A field, the second LTF, the VHT-SIG-B field and the data field are sequentially transmitted, and wherein the second LTF and the data field are mapped to at least one spatial stream based on a mapping matrix but the first LTF and the VHT SIG-A field are not mapped to the at least one spatial stream.