Abstract:
A method is provided in one example embodiment and may include monitoring, by a radio access network (RAN) orchestration function, impairments between a plurality of candidate locations interconnected by a transport network, wherein one or more network elements capable of performing one or more operations associated with a RAN are located at the plurality of candidate locations; determining a decomposition of one or more operations associated with the RAN into a plurality of sets of virtualized network functions (VNFs) to execute the operations; determining a distribution of the plurality of sets of VNFs among the one or more network elements associated with the RAN for one or more optimal locations of the plurality of candidate locations based, at least in part, on the monitored impairments; and instantiating the plurality of sets of VNFs at each of the one or more optimal locations.
Abstract:
A method is provided in one example embodiment and includes identifying an Internet protocol (IP) address for a serving gateway; establishing a link between the serving gateway and a congestion notification element; monitoring packets in order to identify whether a differentiated services code point (DSCP) bit has been set in the packets; determining that a threshold associated with congestion in a network has been exceeded; and communicating a signal to the serving gateway associated with the congestion. The serving gateway can be configured to correlate the congestion with identifiers associated with end users operating in the network, where the serving gateway communicates a signal to a network element to reduce the congestion.
Abstract:
An example method is provided in one example embodiment and may include receiving an attach trigger for a user equipment (UE) within a trusted access network; configuring a first signaling path for the UE for a first Internet protocol (IP) connection; and configuring a second signaling path for the UE for a second IP connection, wherein the first and second IP connections are associated with different IP version types. The method can include switching traffic for the UE between the first signaling path for the first IP connection and the second signaling path for the second IP connection based on IP version type of the traffic.
Abstract:
A method provided in one embodiment includes receiving a resource list including a first core network identifier identifying a first core network, at least a first resource identifier identifying a first subset of network resources from a plurality of network resources associated with the first core network, and a first priority value associated with each of the identified resources of the first core network. The method further includes receiving a first device identifier associated with a first user equipment, determining whether a portion of the first device identifier matches the first core network identifier, and modifying the resource list to include at least a second resource identifier identifying a second subset of the network resources from the plurality of network resources associated with the first core network when the portion of the first device identifier is determined to match the first core network identifier.
Abstract:
A method provided in one embodiment includes receiving a resource list including a first core network identifier identifying a first core network, at least a first resource identifier identifying a first subset of network resources from a plurality of network resources associated with the first core network, and a first priority value associated with each of the identified resources of the first core network. The method further includes receiving a first device identifier associated with a first user equipment, determining whether a portion of the first device identifier matches the first core network identifier, and modifying the resource list to include at least a second resource identifier identifying a second subset of the network resources from the plurality of network resources associated with the first core network when the portion of the first device identifier is determined to match the first core network identifier.
Abstract:
An example method is provided in one example embodiment and includes receiving a request to relocate a user equipment (UE) from a source macro radio to an ambiguous small cell access point (AP), wherein the request includes a target cell identity (ID) encoded with a source macro cell identifier for the source macro radio and a target sub-carrier identifier for the ambiguous small cell AP; determining potential target small cell APs for relocation of the first UE using the using the first target cell ID, wherein each of the potential target small cell APs are within a coverage area of the source macro radio and operate using the target sub-carrier identifier; and preparing, for each of the potential target small cell APs, a common channel to receive relocation of the first UE. The first UE can relocate to a particular target small cell access point using the common channel.
Abstract:
An example method is provided in one example embodiment and includes receiving, by a first Home eNodeB (HeNB), a first attach request from a user equipment (UE) for attaching a subscriber associated with the UE to a small cell network; determining whether the subscriber has transitioned into the small cell network from a macro cell network; exchanging, based on the determination, a first pair of messages between the first HeNB and the UE to determine an International Mobile Subscriber Identity (IMSI) of the subscriber; and exchanging, based on the determination, one or more second pairs of messages between the first HeNB and the UE to advance a sequence number for Non-Access Stratum (NAS) messages for the UE to a value corresponding to a received sequence number for the first attach request from the UE.
Abstract:
An example method is provided in one example embodiment and includes receiving a handover request from a first radio network to handover a user equipment (UE) to a second radio network, wherein the handover request includes an international mobile subscriber identity (IMSI) for a user associated with the UE and a pseudo cell identifier (ID); determining a target channel configuration for the UE using the pseudo cell ID; querying a third radio network using the user IMSI to determine a location of the UE, wherein at least one access point in the third radio network is in communication with the UE; and selecting a particular target access point in the second radio network for handover of the UE based, at least in part, on the location of the UE, the target channel configuration for the UE and a location of the particular target access point.
Abstract:
A method is provided in one example embodiment and includes identifying an Internet protocol (IP) address for a serving gateway; establishing a link between the serving gateway and a congestion notification element; monitoring packets in order to identify whether a differentiated services code point (DSCP) bit has been set in the packets; determining that a threshold associated with congestion in a network has been exceeded; and communicating a signal to the serving gateway associated with the congestion. The serving gateway can be configured to correlate the congestion with identifiers associated with end users operating in the network, where the serving gateway communicates a signal to a network element to reduce the congestion.
Abstract:
Presented herein are techniques associated with replicating an OpenRoaming™ policy federation in a Third Generation Partnership Project (3GPP) network environment. For example, techniques herein provide a roaming policy federation architecture for a 3GPP network environment. In one example a method is provided that may include encoding at least one multi-bit roaming policy for an identity provider and a plurality of bit-wise combinatorial permutations of the at least one multi-bit roaming policy within each of a plurality of multi-bit 3GPP broadcast identifiers, wherein the at least one multi-bit roaming policy includes bit-wise roaming policy information for the identity provider and configuring the multi-bit 3GPP broadcast identifiers for a mobile device associated with the identity provider, wherein the multi-bit 3GPP broadcast identifiers indicate that the mobile device is to connect to a visited radio access network associated with a local Internet Protocol (IP) access service or a home routed access service.