Abstract:
A robust spectrophotometer (also known as a color spectrometer or colorimeter) is self contained in a housing which is adapted to be held-held and has all of the electrical, optical and electro optic elements mounted on a board captured within the housing at one end of which light from a sample is restricted to an object area and projected after being dispersed spectrally, as with a reflection grating, to an image area at a photodetector via a lens which has an optical axis and converges the dispersed light at the image area. The dispersive element is mounted on an arm having a pivot laterally offset from the dispersive element's surface where a diverging beam of light from the object area is incident and is deflected to the image area. The geometry is such that the dispersive element may be rotated to a position where the beam is specularly deflected (zeroth order diffraction), and the spectrometer calibrated when the dispersive element is in the specular reflection/deflection position. The path from the object area is approximately perpendicular to the optical axis, and then is folded by mirrors to direct the beam to incidence on the dispersive element, from which the beam is deflected and focused by the lens, the focal length of which is such that the image and object areas are in conjugate relationship. A pivotal foot on the housing having an aperture may be used to facilitate alignment of the sample with the entrance opening to the housing of the spectrophotometer.
Abstract:
A spectrophotometer which is highly manufacturable at minimum cost nevertheless provides precision of measurement of spectra components of light which is projected therein by maintaining precise optical alignment of optical and electrical components thereof. These components are mounted in a module which is contained in a housing having an entrance aperture which defines an object area for light the spectrum of which is measured by a photodetector in the module at an image area. The module has a base plate provided by a printed circuit board on which a closed wall encompasses an area (a corral) on one side of the circuit board. The wall is a one piece structure which extends to the vicinity of the edge of the board. It is assembled with the board as a unitary structure so that the assembly is made torsionally rigid and resists bending in the plane of the board. The module may be of sufficiently small size so as to be located in a housing which is hand held, thereby providing a hand-held spectrophotometer.
Abstract:
A system and method are provided for the characterization of a sample containing a macromolecule in solution. A light source illuminates the sample, generally in the ultraviolet-visible wavelength range, and a plurality of sensors that are radially disposed about the sample at a plurality of observation angles simultaneously sense the light energy emerging from the sample. An intensity spectrum is calculated as a function of wavelength for each observation angle, from which is calculated a particle characteristic such as shape, conformational change, composition, and particle size distribution. Both scattering and absorption data are utilized to provide complementary information.
Abstract:
A high-precision spectrum separation apparatus enables to generate an output beam having a specific wavelength from a multi-wavelength input beam. The input beam is focused on a diffraction grating through a focusing lens to generate a number of diffracted component beams, of which a diffracted component beam having a specific wavelength is directed to an output slit, resulting in an output beam having well-defined spectral properties. When the output beam is required to have a band of wavelengths, the fixed focal distance of the focusing lens is shorter than is required to generate well-defined output beam, resulting that the diffracted component beam cannot be focused precisely on the output slit. In such a case, a flat glass plate is introduced between the focusing lens and the output slit to adjust the focal-point of the focusing lens so that the diffracted component beams are focused precisely on the output slit. An output beam having well-defined spectral properties is thus produced from the apparatus.
Abstract:
In order to preclude unreliable or inaccurate spectrophotometric measurements which can be caused by thermal effects (expansion/contraction) of components of the spectrophotometer, such as the dispersive element, the arm or mounting for changing the orientation of the element to scan the spectrum and produce spectral measurements, the element, and also displacement of the photodetector, lenses and other optical elements which can caused thermal effects, and also to reduce temperature-related errors in the photodetector or other electronics of the spectrophotometer, a temperature sensor is disposed in thermally coupled relationship within the spectrophotometer housing. A motor, which is coupled to the arm to change the orientation of the element and to the motor controller, is programmed to utilize the motor as a heat source in response to the temperature of the spectrophotometer detected by the sensor when the motor is not actuating the element grating to provide spectral measurements.
Abstract:
An image recording apparatus includes a memory for storing an image information of each page; an image forming device for recording an image onto a recording sheet for each page on the basis of the image information in the memory; a recording sheet conveyor for conveying a recording sheet to the image forming device to record an image on one side thereof, and after that, conveying again the recording sheet to the image forming device to record an image on another side thereof, with no recording sheet being stacked during conveyance, and the recording sheet being conveyed along a specified conveyance path, and a predetermined maximum number of recording sheets can exist within the specified conveyance path. The apparatus further includes a controller for controlling the image forming device and the recording sheet conveyor so that a cycle of an image forming operation corresponding to the maximum number of recording sheets is repeated until a remaining number of pages in the memory to be recorded is less than the maximum number of recording sheets.
Abstract:
In each arm of a Michelson interferometer (IF) a retroreflector (110; 110') having its aperture plane aligned perpendicularly to the optical axis is mounted on a respective holder (106; 106') which in turn is rigidly connected to one end of a shaft (105; 105') rotatably mounted in a connecting member (103; 103'). To the other end of the shaft (105; 105') a first gear (107.sub.1 ; 107.sub.1 ') is secured which is coupled via a toothed belt (909; 109') to an identically configured second gear (107.sub.2 ; 107.sub.2 ') which concentrically to a drive shaft (102; 102') of an electric motor (101; 101') is rigidly connected to the housing (1010; 1010') thereof. At a predetermined distance from the shaft (105; 105') the drive shaft (102; 102') is fixedly connected to the connecting member (103; 103') so that on rotation of the motor drive shafts (102; 102') the length of the optical paths is shortened in one interferometer arm and lengthened synchronously therewith in the other interferometer arm, or vice versa. Furthermore, the aperture planes of the two retroreflectors (110, 110') always remain unchanged aligned perpendicularly to the optical axis (FIG. 2 ).
Abstract:
An improved multiple grating spectrograph is provided comprising a grating changer for mounting gratings, and rotatable about an axis substantially perpendicular to grating lines such that changing from one grating to another preserves the wavelength-selecting angle of incidence of electromagnetic radiation. The grating changer preferably includes a grating holder, and an actuator for moving the holder about the axis.
Abstract:
An optical spectrum analyzer is provided with a user selectable sensitivity. Required operating parameters are set in response to user selection of sensitivity to permit measurement of an input light beam at the selected sensitivity. Setting the required parameters includes setting a required gain of a video channel to permit measurement of a specified maximum light signal and to provide the selected sensitivity, setting a required video bandwidth of the video channel to provide the selected sensitivity at the required gain of the video channel and setting a sweep rate to provide the selected sensitivity at the required video bandwidth. When the normal bandwidth of the video channel is not adequate to provide the selected sensitivity, the electrical signal is passed through a digital filter having a filter coefficient set to provide the required video bandwidth. A peak detector is incorporated in the video channel to accurately measure signal amplitudes in a fast scanning condition.
Abstract:
In a spectrophotometer application where high speed positioning is critical, a galvanometer in conjunction with a microprocessor controlled hybrid digital/analog servo system is used to rotate a diffraction grating for wavelength selection. A table containing digital position information for all wavelengths is accessed by the microprocessor to perform wavelength changes. The use of the table permits the determination of grating position to yield a desired wavelength for a system where the axis of rotation does not intersect a point on the surface of the diffraction grating. That is, the diffraction grating can be rotated about an axis coinciding with its center of gravity.