Abstract:
A composite circuit board with fracturable structure includes a first flat cable and first signal transmission lines formed on the first flat cable. A second flat cable is stacked on and bonded to the first circuit flat cable. The second flat cable includes second signal transmission lines and forms an overlapping segment and a selective breakable segment between which a fracturable structure is formed. The selective breakable segment covers the connection segment of the first flat cable or may be broken off for separation of the flat cables. Some of the second signal transmission lines of the second flat cable are connected through a hole in the first circuit flat cable to the first signal transmission lines of the first flat cable or connected through the hole to the conductive terminals of the connection segment of the first flat cable.
Abstract:
The present invention relates to a pre-concentration device and method for an ion mobility detection apparatus. According to an aspect of the invention, there is provided a pre-concentration device comprising: a collecting passage configured to collect a gas mixture including substances to be detected: a sieve provided, in a deploy state, within the collecting passage and configured to separate the substances from the gas mixture, the separated substances being absorbed to the sieve; at least one desorption unit configured to desorb the substances that have been absorbed to the sieve, the sieve being received in a wound state in the desorption unit; and a driving device configured to drive movement of the sieve between an absorption position in which the substances are absorbed to the sieve in the collecting passage, and a desorption position in which the substances are desorbed from the sieve in the at least one desorption unit.
Abstract:
The present invention discloses a sampling device for an ion migration spectrometer (IMS), comprising: an inner sleeve part, inside of which an inner cavity is defined, one end of the inner sleeve part is connected with an inlet of an migration pipe via an inner-layer channel, and the other end of the inner sleeve part is configured with an inner end cap having an inner opening; and an outer sleeve part, which is configured as an eccentric sleeve that is coaxial with the inner sleeve part and able to rotate with respect to the inner sleeve part, so as to form a sleeve cavity between the inner sleeve part and the outer sleeve part, wherein one end of the outer sleeve part is configured with at least one connecting opening that is selectively connected with the inner-layer channel, and the other end of the outer sleeve part is configured with an outer end cap, on which a first outer opening selectively connected with the inner opening and a second outer opening selectively connected with the sleeve cavity are configured, wherein the outer end cap is configured to be able to rotate between a first location and a second location with respect to the inner end cap, so as to selectively introduce a sample to be detected into the inner-layer channel via one of the inner cavity and the sleeve cavity. Moreover, the present invention further relates to a method for solid and gas sampling by using the above sampling device.
Abstract:
Disclosed is a detachment and displacement protection structure for insertion of flexible circuit flat cable. An inserter positioning section is formed on a flexible circuit flat cable and coupled with an inserter, which includes a metal member and a plastic member. In assembling, the plastic member is first positioned on a first surface of the inserter positioning section of the flexible circuit flat cable, and then the metal member is fit over the plastic member. A detachment and displacement protection structure is provided on the inserter positioning section to constrain the inserter from displacing and detaching in a flat cable extension direction due to being acted upon by an external force when the inserter is positioned on the inserter positioning section.
Abstract:
Methods to improve optimization of compilation are presented. In one embodiment, a method includes identifying one or more optimization speculations with respect to a code region and speculatively performing transformation on an intermediate representation of the code region in accordance with an optimization speculation. The method includes generating an advice message corresponding to the optimization speculation and displaying the advice message if the optimization speculation results in an improved compilation result.
Abstract:
The invention relates to genes for promoting rapid growth of plant, characterized in genes that are Banana ABC transporter MhPDR1 or MhPDR2 genes, wherein the transporters have amino acid sequences depicted in SEQ ID No: 1 and SEQ ID No: 3, respectively, and the genes have nucleotide sequences depicted in SEQ ID No: 2 and SEQ ID No: 4, respectively. The invention provides further applications of the banana transporter MhPDR1 or MhPDR2 genes, characterized in that the over-expression of the genes in a plant can promote rapid growth of the plant. In addition, the present invention provides a transgenic plant or partial organ, tissue or cells thereof containing the genes or derivatives thereof; as well as provides further a method for promoting rapid growth of a plant.
Abstract translation:本发明涉及用于促进植物快速生长的基因,其特征在于基因是香蕉ABC转运蛋白MhPDR1或MhPDR2基因,其中转运蛋白分别具有SEQ ID No:1和SEQ ID No:3所示的氨基酸序列, 基因分别具有SEQ ID No:2和SEQ ID No:4所示的核苷酸序列。 本发明提供了香蕉转运蛋白MhPDR1或MhPDR2基因的进一步应用,其特征在于植物中基因的过表达可促进植物的快速生长。 此外,本发明提供含有其基因或衍生物的转基因植物或部分器官,组织或细胞; 并提供进一步促进植物快速生长的方法。
Abstract:
A method for transforming access to a structure array, that includes compiling source code, wherein compiling the source code includes identifying the structure array in the source code, performing an object safety analysis to determine whether the structure array is safe for transformation, wherein the object safety analysis includes an inter-procedural alias class analysis, performing a profitability analysis on the structure array when the structure array is safe for transformation, wherein the profitability analysis includes selecting a transformation from a plurality of transformations, wherein the plurality of transformations includes a pointer based fully splitting transformation, a pointer based partially splitting transformation, and an address based fully splitting transformation, and performing the selected transformation on the structure array, and storing the compiled code.
Abstract:
By understanding a website author's intention through an analysis of the function of a website, website content can be adapted for presentation or rendering in a manner that more closely appreciates and respects the function behind the website. Various inventive systems and methods analyze a website's function so that its content can be adapted to different client environments, e.g. devices, network conditions, or user preferences. A novel function-based object model automatically identifies objects associated with a website, and analyzes those objects in terms of their functions. The function-based object model permits consistent, informed decisions to be made in the adaptation process, so that web content is displayed not only in an organized manner, but in a manner that reflects the author's intention.
Abstract:
A method of recycling a control wafer having a low-k dielectric layer deposited thereon involves etching a portion of the low-k dielectric layer using a plasma resulting in a residual film of the low-k dielectric layer and byproduct particulates of carbon on the substrate. The residual dielectric film is removed by wet etching with a low polarization organic solvent that includes HF and a surfactant.
Abstract:
Disclosed is an ion gate for a dual IMS and method. The ion gate includes an ion source, a first gate electrode placed on one side of the ion source, a second gate electrode placed on the other side of the ion source, a third gate electrode placed on the side of the first gate electrode away from the ion source, a fourth gate electrode placed on the side of the second gate electrode away from the ion source, wherein during the ion storage, the potential at the position on the tube axis of the ion gate corresponding to the first gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the third gate electrode, and the potential at the position on the tube axis corresponding to the second gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the fourth gate electrode. According to the present invention, after sample gas enters the ion gates, charge exchange with reaction ions occurs between the first gate electrode and the second electrode, and positive and negative ions are continuously stored into the storage regions for the positive and negative ions. This leads to an improvement of utility rate of ions. Then, the ions are educed in a step-wise manner from the storage regions for the positive and negative ions by a simple control of a combination of the electrodes.