Abstract:
In one embodiment, a management system determines respective capability information of machine learning systems, the capability information including at least an action the respective machine learning system is configured to perform. The management system receives, for each of the machine learning systems, respective performance scoring information associated with the respective action, and computes a degree of freedom for each machine learning system to perform the respective action based on the performance scoring information. Accordingly, the management system then specifies the respective degree of freedom to the machine learning systems. In one embodiment, the management system comprises a management device that computes a respective trust level for the machine learning systems based on receiving the respective performance scoring feedback, and a policy engine that computes the degree of freedom based on receiving the trust level. In further embodiments, the machine learning system performs the action based on the degree of freedom.
Abstract:
In one embodiment, a time at which a first device in a frequency-hopping communication network is expected to transmit a data message is determined. A first schedule is then generated based on the determined time, and the first schedule is overlaid on a frequency-hopping schedule for a second device in the network. The first schedule defines a first timeslot during which the second device listens for the data message, while the frequency-hopping schedule defines second timeslots during which the second device listens for data messages from other devices in the network. Notably, a duration of the first timeslot is greater than respective durations of the second timeslots.
Abstract:
In one embodiment, a device in a network receives information regarding one or more attack detection service level agreements. The device identifies a set of attack detection classifiers as potential voters in a voting mechanism used to detect a network attack. The device determines one or more parameters for the voting mechanism based on the information regarding the one or more attack detection service level agreements. The device adjusts the voting mechanism used by the potential voters based on the one or more parameters for the voting mechanism.
Abstract:
In one embodiment, a device in a network receives one or more time slot usage reports regarding a use of time slots of a channel hopping schedule by nodes in the network. The device predicts a time slot demand change for a particular node based on the one or more time slot usage reports. The device identifies a time frame associated with the predicted time slot demand change. The device adjusts a time slot assignment for the particular node in the channel hopping schedule based on predicted demand change and the identified time frame associated with the predicted time slot demand change.
Abstract:
In one embodiment, one or more neighboring nodes that neighbor a sending node in a channel-hopping network are determined. Each neighboring node has multiple channels on which a data packet can be received at a particular time according to a channel-hopping receive schedule. Then, a currently active channel of each neighboring node is determined, where a data packet can be received on the currently active channel at the current time. A channel quality of the currently active channel of each neighboring node is computed, and based on the computations, a transmission overhead is estimated for communicating with each neighboring node. A data packet can then be transmitted to io the neighboring node that provides a path that minimizes the estimated transmission overhead.
Abstract:
In one embodiment, a network device routes traffic along a network path and receives a performance threshold crossing alert regarding performance of the network path. The network device detects that the performance threshold crossing alert is part of a potential network attack by analyzing, by the device, the performance threshold crossing alert. The network device also provides a notification of the detected network attack.
Abstract:
In one embodiment, a plurality of paths in a network from a source device to a destination device is identified. A predicted performance for packet delivery along a primary path from the plurality of paths is determined. The predicted performance for packet delivery along the primary path is then compared to a performance threshold. Traffic sent along the primary path may be duplicated onto a backup path selected from the plurality of paths based on a determination that the predicted performance along the primary path is below the performance threshold.
Abstract:
In one embodiment, a network device receives metrics regarding a path in the network. A predictive model is generated using the received metrics and is operable to predict available bandwidth along the path for a particular type of traffic. A determination is made as to whether a confidence score for the predictive model is below a confidence threshold associated with the particular type of traffic. The device obtains additional data regarding the path based on a determination that the confidence score is below the confidence threshold. The predictive model is updated using the additional data regarding the path.
Abstract:
In one embodiment, a central device receives a routing strategy instruction that specifies a predictability threshold for communication delays in the network. The device estimates communication delays for a plurality of paths in the network and determines predictability measurements for the estimated delays. The device also selects, from among the plurality of paths, a particular path that has a predictability measurement that satisfies the predictability threshold and has a minimal estimated delay. The central device further installs the particular path at one or more other devices in the network.
Abstract:
In one embodiment, a device in a network receives a message from a neighboring device that identifies the electrical phase on which the message was sent. Crosstalk is identified between the device and the neighboring device by determining that the message was received on a different electrical phase than the phase on which the message was sent. One or more distinct communication channels between the device and the neighboring device are identified based on the identified crosstalk with each communication channel including or more electrical phases.