Abstract:
Provisioning and access control for communication nodes involves assigning identifiers to sets of nodes where the identifiers may be used to control access to restricted access nodes that provide certain services only to certain defined sets of nodes. In some aspects provisioning a node may involve providing a unique identifier for sets of one or more nodes such as restricted access points and access terminals that are authorized to receive service from the restricted access points. Access control may be provided by operation of a restricted access point and/or a network node. In some aspects, provisioning a node involves providing a preferred roaming list for the node. In some aspects, a node may be provisioned with a preferred roaming list through the use of a bootstrap beacon.
Abstract:
Systems and methodologies are described that facilitate improving session initiation protocol based registration of a mobile device and an IP multimedia subsystem in wireless communications. The mobile device discovers one or more SIP servers (e.g., proxy call session control functions) that are available. The mobile device issues a ping message to each discovered server in parallel to determine reachability. Based at least in part on measured round trip times associated with the ping messages, the mobile device initiates registration procedures with at least one server.
Abstract:
Techniques to configure quality of service (QoS) for communication are described. An access terminal configures a first QoS profile prior to a call. This QoS profile is for a set of QoS parameters that provides certain QoS. The access terminal thereafter establishes (e.g., originates or terminates) a call with an access network. If the first QoS profile is appropriate for the call, then QoS is not reconfigured. However, the access terminal may determine that a second QoS profile is to be used for the call, e.g., based on a format or a rate set supported by a remote/other terminal for the call. The access terminal would then configure the second QoS profile during the call. The access terminal may exchange data in accordance with (a) the first QoS profile before the second QoS profile is configured and activated and (b) the second QoS profile after it is configured and activated.
Abstract:
Devices and methods are provided for facilitating selection and acquisition of an access point (AP) base station via implementation of a system selection file that may include a preferred roaming list (PRL), a public land mobile network (PLMN) database, or the like. The selection attempts may be limited to specific preferred systems, such as, for example, the AP base station. The system selection file includes identification parameters of the preferred systems. In one embodiment, the identification parameters include at least one of a system identifier (SID) and a network identifier (NID) for a given one of the systems.
Abstract:
Devices and methods are provided for facilitating handing over to a hybrid femto access point that implements multiple radio access technologies (RATs), including a first RAT and a second RAT. In one embodiment, the method involves detecting a pilot from the hybrid femto access point, wherein the pilot is associated with the first RAT. The method involves registering with the hybrid femto access point on a first channel associated with the first RAT based upon the detected pilot. A system selection database is analyzed to identify a second channel associated with the second RAT, and a selection to handover to the identified second channel is effectuated.
Abstract:
Systems, apparatus and methods for facilitating identification and/or acquisition of an access point are provided. Methods can include transmitting or receiving access point information (“API”) indicative of an identification of the access point (“AP”). The API can be provided at the AP through hardwiring or receipt of configuration information input by a user or transmitted to the AP by a network operator through Over-The-Air (“OTA”) signaling. The API can be computer-readable and, in some embodiments, the API can also be human-readable. The API can be transmitted on a paging channel from which user equipment (“UE”) can receive information. The frequency at which the API is transmitted can be fixed, dynamic and/or configurable. Upon receipt of the API, acquisition of the AP is attempted if the AP is determined to be a permitted AP.
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Methods and apparatuses are provided that pausing transmission control protocol (TCP) transmissions during or following handover to prevent unwarranted duplicated acknowledgement transmission, which can cause decrease in TCP window size. During handover, transmission on-hold commands can be sent to a TCP layer that indicate to prepare to pause TCP transmissions, immediately pause TCP transmissions, and/or the like. Transmission resume commands can be sent to the TCP layer following handover. In addition, TCP transmissions can be paused following handover to allow data forwarding data to be provisioned to a device from a target base station without duplicated acknowledgement transmission.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus monitors a page during a current paging cycle on a first frequency. In addition, the apparatus switches to a second frequency after the current paging cycle to receive multicast/broadcast information on the second frequency. Furthermore, the apparatus attempts to receive the multicast/broadcast information on the second frequency before a predetermined time.
Abstract:
A mobile communication network includes a plurality of access nodes that can serve different roles in support of a communication session with a mobile station. An access node can serve as a connecting node that receives access requests the mobile station, as an anchor node to anchor a radio packet connection with a core network for the communication session; or as a primary node to store session information for the communication session. When the communication session is established, the anchor node for the communication session may select another access node to serve as the primary node. Session information can be stored at both the anchor node and primary node so that data can be delivered to the mobile station if either one of the anchor node and primary node are available.