Abstract:
The present disclosure provides various aspects related to techniques for generating trigger frames, at an access point (AP), that reduce the overhead associated with triggering an uplink transmission from the wireless station (STA). Features of the present disclosure achieve this by, for example, utilizing a single per-user information field of the trigger to signal a plurality of random access resource units that may be allocated to the one or more STAs in the network. Such a technique is an improvement over the conventional system that require each random access resource unit to be signaled separately in a separate per-user information field (thus increasing the overhead). Additionally, aspects of the present disclosure allow the AP to effectively signal to the STA whether the one or more resources allocated to the at least one STA are a single user resource unit allocation or a multi-user resource unit allocation.
Abstract:
The present disclosure provides various aspects related to techniques for generating trigger frames, at an AP, that reduce the overhead associated with triggering an uplink transmission from the STA. In some examples, the STA may also calculate its transmit power by decoding a spatial reuse subfield of the trigger frame from the AP and identifying downlink pathloss measurements of the trigger frame. Accordingly, the STA may identify acceptable interference level of the AP and calculate a transmit power in order to minimize interference at the AP. In some aspects, the STA may transmit its uplink packets to a different AP on one or more punctured channels at the calculated transmit power of the STA.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, the apparatus is configured to determine a target receiver power level for uplink transmissions received at the apparatus, to determine uplink power control information based on the determined target receiver power level for UL MU-MIMO transmission or UL OFDMA transmission, and to transmit a frame that includes the determined uplink power control information to a station scheduled by the apparatus for uplink transmission.
Abstract:
Aspects of the present disclosure provide techniques for sounding procedures using frames with some portions that use relatively long symbol durations. Certain aspects of the present disclosure provide a method that may be performed by an access point. The method generally includes generating one or more frames, collectively having one or more training fields allowing one or more stations to calculate channel information and an indication of one or more feedback parameters for the one or more stations to use for generating the channel information; transmitting the one or more frames; and receiving channel information from at least one of the stations calculated, in accordance with the one or more feedback parameters, for a corresponding one or more reporting units based on the one or more training fields, wherein the channel information is received via a report containing a plurality of channel information parameters for each of the one or more reporting units.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to Wi-Fi systems including frame extensions in transmission frames. Lengths of frame extensions may be determined based on transmission bandwidths and transmission data rates of the frames. Lengths of frame extensions may also be determined based on an amount of useful data in a final symbol of the frame. An access point (AP) may determine frame extension lengths for use in transmitting to stations (STAs) based on reception capabilities of the STAs. An AP may determine frame extension lengths for STAs to use in transmitting frames.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus includes a processor configured to determine a first set of CSD values for transmitting a first set of information on a plurality of antennas, determine a second set of CSD values for transmitting a second set of information on the plurality of antennas, and transmit the first set of information based on the first set of CSD values and the second set of information based on the second set of CSD values.
Abstract:
Systems and methods for wireless communications are disclosed. More particularly, aspects generally relate to techniques for indicating a minimum and maximum channel bandwidth in a frame (e.g., short frame). One or more bits in the frame, for example a management frame, may indicate both minimum and maximum bandwidths for communicating in the network. According to aspects, a wireless terminal may determine the minimum and maximum bandwidths for communicating in the network based on a mapping of different values of the one or more bits to combinations of minimum and maximum bandwidths. While any field in the frame may indicate the minimum and maximum bandwidth, according to aspects, the Basic Service Set (BSS) bandwidth (BW) field may be used for the indication.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for generating a frame with timing information for a target wake time (TWT) and an identification of the TWT. An example method generally includes generating a frame generating a frame comprising timing information for a target wake time (TWT) and an identification of the TWT to which the timing information applies, and outputting the frame for transmission.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. A first apparatus includes a processor configured to set a location of a primary channel in a operating channel width (Op CW) on which a second apparatus is allowed to communicate with the first apparatus, define a set of operating channels independent of the Op CW, wherein the set of operating channels includes a channel via which the second apparatus is allowed to change the location of the primary channel to communicate with the first apparatus, indicate the set of operating channels to the second apparatus, indicate an offset associated with a channel of the set of operating channels to identify the location of the primary channel, and indicate an offset associated with the location of the primary channel to identify a location of the set of operating channels.