Abstract:
The present invention relates to a method for transmitting a frame in a wireless communication system, in particular, a high density wireless LAN system, and a station apparatus for performing the same. To this end, a station for transmitting a frame configures a radio frame for a second type station, including a frame part for a first type station and a frame part for the second type station, wherein the frame part for the second type station includes a first signaling field (SIG A) for the second type station and a second signaling field (SIG B) for the second type station. The SIG A for the second type station includes modulation and coding scheme (MCS) information applied to the SIG B for the second type station, and the MCS level applied to the SIG B for the second type station supports an MCS having level than the lowest MCS level defined for the first type station.
Abstract:
Provided are a method for transmitting data and a device using the same in a wireless LAN. A transmitter transmits a physical layer protocol data unit (PPDU) in a transmission bandwidth. The PPDU includes a first part to which a first fast Fourier transform (FFT) size is applied, and a second part to which a second FFT size is applied. The number of pilots of the second part is identical to the number of pilots of the first part, and the pilot frequency location of the second part is identical to the pilot frequency location of the first part.
Abstract:
A device and method for transmitting a frame in a wireless LAN, with the method including the steps of: transmitting, by an AP, an RTS frame for medium protection to a first STA set; receiving, by the AP, CTS frames, in sequence, from each of a plurality of STAs included in a second STA set in response to the RTS frame, the second STA set being included in the first STA set; and transmitting, by the AP, each of a plurality of PPDUs to each of the plurality of STAs via each of a plurality of subbands for each of the plurality of STAs on an overlapping time resource.
Abstract:
A method for resource allocation in a wireless LAN system according to an embodiment of the present invention is characterized in that an access point (AP) sends a frame comprising a signaling field and a data field to one or more stations, wherein the signaling field comprises a first signaling field (SIG A field) including first common control information for the one or more stations and a second signaling field (SIG B field) including individual control information for each of the one or more stations, wherein the second signaling field includes resource allocation information for data transmission to the one or more stations, and wherein the resource allocation information comprises resource allocation information for data to be transmitted in a frequency band different from a frequency band in which the second signaling field (SIG B field) is transmitted.
Abstract:
Disclosed are a method and a device for transmitting data based on different pilot tone patterns in a wireless LAN. The method for transmitting data based on the different pilot tone patterns in a wireless LAN may comprise the steps of: an AP transmitting, to a first STA, a first data field generated based on a first pilot tone pattern, from a first frequency bandwidth; and the AP transmitting, to a second STA, a second data field generated based on a second pilot tone pattern, from a second frequency bandwidth, wherein the size of the first frequency bandwidth is n times larger than the size of the second frequency bandwidth, the size of IFFT applied to the first data field and the size of IFFT applied to the second data field are identical, the first pilot tone pattern includes a plurality of first pilot tones, wherein the plurality of first pilot tones are respectively allocated to each of a plurality of first pilot tone indexes, the second pilot tone pattern includes a plurality of second pilot tones, wherein the plurality of second pilot tones are respectively allocated to each of a plurality of second pilot tone indexes, and wherein a portion of the first pilot tone indexes may be identical to the plurality of second pilot tone indexes.
Abstract:
A method and a device for transmitting a data unit are disclosed. A method for transmitting a PPDU can comprise the steps of: generating, by an STA, the PPDU including a first portion and a second portion; and transmitting, by the STA, the PPDU, wherein the first portion is generated by performing IFFT according to a first FFT size, the second portion is generated by performing IFFT according to a second FFT size, and the first FFT size can differ from the second FFT size.
Abstract:
Disclosed according to one embodiment of the present invention is a method whereby a management device, which enables coexistence of television white space (TVWS) devices in a TVWS, sends a server a request for the selection of a master management device, the method comprising the steps of: determining whether a trigger condition for the process of selecting the master management device is satisfied; judging the management device as a candidate slave management device, and the other management devices as candidate master management devices, provided that the trigger condition is satisfied; and initiating the process for selecting the master management device, wherein the trigger condition may be based on the load balance parameter or geographical coverage parameter of the management device.
Abstract:
A multiple distributed system is disclosed. An uplink control resource allocation method for a user equipment to transmit an Acknowledgement/Negative ACK (ACK/NACK) signal includes receiving one or more Enhanced-Physical Downlink Control Channels (E-PDCCHs), receiving one or more Physical Downlink Shared Channels (PDSCHs) corresponding to the one or more E-PDCCHs, and transmitting ACK/NACK signals for reception of the one or more PDSCHs through a Physical Uplink Control Channel (PUCCH), wherein Control Channel Element (CCE) indexes of the PUCCH transmitting the ACK/NACK signals are determined in consideration of first CCE indexes of the one or more E-PDCCHs and the number of CCEs of a PUCCH determined by a higher layer.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transceiving a downlink control channel. According to one embodiment of the present invention, method in which a base station transmits downlink control information in a wireless communication system comprises: a step for determining an allocatable resource region for an enhanced physical downlink control channel (E-PDCCH) of a local allocation system; a step for allocating an E-PDCCH to the determined allocatable resource region for the E-PDCCH; and a step for transmitting the downlink control information on the allocated E-PDCCH. The allocatable resource region for the E-PDCCH can be set as a group of partial resource regions in each of a plurality of partitions when a downlink system bandwidth contains said plurality of partitions.
Abstract:
A wireless communication system is disclosed. Specifically, a channelization method in a whitespace band and an apparatus for the same are disclosed. A method for providing whitespace operation information includes transmitting, by a first station (STA) to a second STA, a frame including a TV whitespace high throughput (TVHT) operation information field. The TVHT operation information field includes primary channel number, channel width, channel center frequency segment 0 and channel center frequency segment 1 subfields. A channel center frequency of frequency segment 0 or frequency segment 1 is determined based on a channel start frequency. The channel start frequency is determined as a function of a TV channel index corresponding to the frequency segment 0 or a TV channel index corresponding to the frequency segment 1.