Abstract:
The present invention provides a flux-guided head for use in a magnetic recording system, such as a disk drive. The head includes a write element that is capable of writing magnetic polarity transitions into the surface of a magnetic media, such as a magnetic disk, using vertical/perpendicular recording techniques. Further, a read element is provided that includes a magnetoresistive element that, when reading perpendicularly-recorded magnetic transitions from the surface of the magnetic media, produces a readback pulse signal having a substantially Lorentzian pulse shape.
Abstract:
A method of making a magnetic head includes imbedding a coil layer in an insulation stack. The coil layer is formed with a filament that extends about a central axis. The central axis is perpendicular to a planar head surface and a coil plane. First and second pole pieces are formed with the insulation stack sandwiched between the first and second pole pieces. A first shield layer having first and second major planar thin film surfaces is joined by a third edge with the first major planar thin film surface of the first shield layer forming a portion of the planar head surface. A magnetoresistive (MR) sensor and first and second gap layers are formed with the MR sensor sandwiched between the first and second gap layers and the first and second gap layers located between the third edge and the first horizontal component and with the MR sensor and the first and second gap layers forming portions of the planar head surface.
Abstract:
A soft magnetic film is formed of a CoFeNi alloy containing trace amounts of chlorine and sulfur as impurities. The stress of the soft magnetic film can be reduced effectively, specifically to 1,200 MPa or less, by adjusting the concentration ratio of chlorine to sulfur within the range from 1 to 60. In addition, variations in film stress can be reduced to provide higher yields of CoFeNi alloy films with low stresses.
Abstract:
There is provided a magnetic material with a high saturation magnetization of 2.46 teslas or above. By using this magnetic material in a recording head, it is possible to record information with a higher density on a recording medium. The magnetic material can also be applied to various kinds of solid-state devices. The magnetic material is composed of an alloy film made of iron, cobalt, and palladium, wherein a mole percentage content of palladium is set equal to 0.7% or greater but less than 1.0%, and the magnetic material is formed by dry processing.
Abstract:
A horizontal combined head is provided which has both a thin film write and an MR read element located at an air bearing surface (ABS). The read element can be formed with a track width that is independent of the track width of the write element. The MR sensor or the read element is separated from one of the first and second pole pieces of the write element by an insulation layer. Accordingly, the shields for the read element remain more stable after a write operation. In one embodiment of the present invention a single stripe MR sensor is employed while in a second embodiment a dual stripe MR sensor is employed. A method of the invention includes forming the dual MR stripe in a single process step so that the dual MR stripes of the dual MR sensor are near identical for implementing near absolute common mode rejection of noise.
Abstract:
In formation of an upper shield of a magnetic thin film head by electroplating, a current density of electroplating is regulated stepwise with time. Thus, in the upper shield formation, a film composition and magnetic characteristic with respect to the direction of film thickness can be controlled precisely, making it possible to provide a magnetic thin film head featuring significantly reduced noise-after-write and output fluctuation.
Abstract:
A compact write element includes a conductive shield layer, an insulating write gap layer, a pole pedestal, a coil, and a conductive pole layer, and, in some embodiments also includes a backgap. The pole pedestal and the coil, and, in some embodiments the backgap, constitute a self-aligned array of components that may be formed in a single masking operation to allow for very tight tolerances between the components for a shorter yoke length. The pole layer is substantially flat and parallel to the conductive shield layer, providing for a shorter stack height. Also, a compact MR read/write head includes such a write element and a magnetic data storage and retrieval system includes the compact MR read/write head having such a write element.
Abstract:
A magnetic head includes a metallic material layer between a lower core layer and an upper shield layer. This metallic material layer extends to the rear of the magnetic head in the height direction to overlap with a first metal layer. The metallic material layer can therefore efficiently dissipate joule heat generated from a write head section to the outside of the magnetic head through the first metal layer. In addition, the metallic material layer can block a fluctuating magnetic field generated from the write head section. Thus, this magnetic head can reduce variations in the magnetic domain structures of upper and lower shield layers to stabilize the read output of a read head section.
Abstract:
A magnetic head of a magnetoresistance type is provided. The magnetic head comprises a magnetoresistance film, an underlying layer formed on each of both sides of the magnetoresistance film, and a magnetic-domain regulating film formed on the underlying layer so as to regulate a magnetic domain of a free magnetic layer in the magnetoresistance film. The underlying layer has a laminated structure of a tungsten-(W)-group metal layer formed on a tantalum-(Ta)-group metal layer. The underlying layer is formed so thick as to arrange the magnetic-domain regulating film at a position corresponding to the free magnetic layer.
Abstract:
A transducing head includes at least three magnetic layers. At least two of these magnetic layers function as shields of a reader portion of the transducing head, and at least one of these magnetic layers functions as a pole of a writer portion of the transducing head. Importantly, at least one of the three magnetic layers is formed of a thin film structure having a first and a second ferromagnetic layer, a nonmagnetic spacer layer, and a bias layer. The spacer layer is positioned between the first and the second ferromagnetic layers. The bias layer is positioned adjacent the first ferromagnetic layer. The second ferromagnetic layer has a thickness-magnetic moment product substantially equal to a thickness-magnetic moment product of the first ferromagnetic layer. An easy axis of the second ferromagnetic layer is substantially parallel to an easy axis of the first ferromagnetic layer.