Abstract:
Described is a component for a fill level measuring device or for a pressure measuring device. The component may include a coating with a microsmooth surface so that the microsmooth surface remains essentially free of any deposits.
Abstract:
A labyrinth box can include a housing that has an open end, a closed end, and defines two cavities. A cover is configured to cover the opening and can include a divider that extends into one of the two cavities of the housing to define first and second chamber passageways in that cavity. An inlet port is located in the bottom closed end of one of the cavities and an outlet port is located in the other of the cavities. The surfaces that define the chambers can be configured such that the box can be oriented in different positions and still work, namely, in horizontal and vertical positions. When in the vertical position, the divider can include surfaces that are angled off of the horizontal plane and towards the inlet port such that water and debris will return to the inlet port via gravity. The labyrinth box can be used in applications that require separation between fluids and/or debris, such as in a fuel tank pressure sensor system in which rainwater, backsplash, or other debris, should be kept clear from a pressure sensor that has a portion exposed to atmospheric pressure for sensor reference purposes.
Abstract:
A gas physical quantity detecting device is basically provided with detection element, a detection element chamber and a filter. The detection element is configured to detect a physical quantity of a gas flowing through a gas flow passage. The detection element chamber contains the detection element and configured to supply gas from inside the gas flow passage to the detection element. The filter is arranged between the gas flow passage and the detection element chamber. The filter has a predetermined thickness with the filter being made of a non-hydrophobic material.
Abstract:
A relative pressure measuring transmitter resistant to the intrusion of moisture. includes a housing, an insert arranged in the housing, a gap existing between the housing and the insert, a relative pressure sensor, and, connected to the relative pressure sensor, a reference pressure supply line, which leads into the insert, opens on an outer wall of the insert, and has an interior, which is connected via an opening in insert with the gap The housing has a bore passing through it, via which the gap is placed in communication with an environment of the relative pressure measuring transmitter.
Abstract:
A semiconductor pressure sensor is provided with a semiconductor pressure sensor part that converts a pressure to an electrical signal, a sensor module in which said semiconductor pressure sensor part and a terminal of which part is extended to the outside are insert-molded with a first resin, and an outer case in which said sensor module is contained, and said sensor module is further insert-molded with a second resin to form a connector portion, and the semiconductor pressure sensor is characterized in that the exposed portion of the sensor module from the second resin, and the boundary between the exposed portion of the sensor module and the second resin are covered with an adhesive.
Abstract:
A pressure sensor apparatus includes a reception container for receiving a pressure sensor, the reception container having an opening on one side. Furthermore, the pressure sensor apparatus includes a protective membrane closing the opening, a pressure sensor arranged in the reception container, and a gel arranged between the pressure sensor and the protective membrane.
Abstract:
Arrangement for arranging the measurement of external pressure in a wristop instrument, such as a sports computer, a diving computer, a wristwatch, or similar. The arrangement in the instrument comprises an instrument body (1),- at least one watertight space inside the instrument body (1), and at least one circuit board (2) situated in the watertight space. A flow path (6) is arranged through the instrument body (1) to the watertight space and this flow path (6) is closed by a membrane (7), which is permeable by a gas, but not by water; and which closes the flow path (6) watertightly. A pressure sensor (3) is situated in the watertight space that is formed.
Abstract:
Described is a component for a fill level measuring device or for a pressure measuring device. The component may include a coating with a microsmooth surface so that the microsmooth surface remains essentially free of any deposits.
Abstract:
A pressure sensor includes: a measuring cell having a base plate and a measuring membrane connected along its edge with the base plate, and means for generating an electrical quantity dependent on deformation of the measuring membrane; a circuit for registering the electrical quantity; and a capsule having a capsule body and a sealing element, with which the capsule is hermetically sealed along a joint. The capsule encloses the circuit, in order to protect such from influences of moisture; and the joint of the capsule is mechanically decoupled from the base plate. The mechanical decoupling of the joint means, for example, that at least the axial support of the pressure measuring cell in a housing is not allowed to be transferred through the joint. Despite arranging of the capsule on the base plate, pressure-related and temperature-related distortions of the base plate are not permitted to have any effects on the joint of the capsule.
Abstract:
A transducer assembly including a sensor housing, a heater shell located in the sensor housing, a heater operatively coupled to the heater shell, a sensor received in the heater shell, and an electronics assembly positioned within the sensor housing, outside of the heater shell, and adapted to receive signals from the sensor. The assembly also includes a mounting plate positioned within the sensor housing, outside of the heater shell. The mounting plate has arms extending therefrom and at least one attachment point where the electronics assembly is secured to the mounting plate. The arms are secured to the sensor housing, and the mounting plate includes apertures adjacent to the arms for impeding thermal conduction between the arms and the attachment point.