Abstract:
A turbo refrigerator is provided with: a turbo compressor having a motor; an oil cooling unit which cools lubricating oil which is supplied to at least a portion of the turbo compressor; a refrigerant introduction part which introduces some of the refrigerant which circulates between an evaporator and a condenser into a motor accommodation space and the oil cooling unit; and a cooling unit which cools the refrigerant which is introduced into the motor accommodation space and the oil cooling unit.
Abstract:
A dual-stage enthalpy-increasing air-conditioning system comprises a compressor (1), an outdoor heat exchanger (3), a first throttle component (8) and an indoor heat exchanger (11), wherein the components are connected via pipelines; the system also comprises a flash evaporator (6) and a second throttle component (7); a first connecting port of the flash evaporator (6) is connected with a first connecting port of the first throttle component (8); a second connecting port of the first throttle component (8) is connected with the indoor heat exchanger (11); a second connecting port of the flash evaporator (6) is connected with an air supplementing port of the compressor (1); a third connecting port of the flash evaporator (6) is connected with a first connecting port of the second throttle component (7); a second connecting port of the second throttle component (7) is connected with the outdoor heat exchanger (3). The dual-stage enthalpy-increasing air-conditioning system could adjust evaporation capacity and air compensation at the same time, thereby enhancing the operation stability of the system.
Abstract:
There is disclosed an air-conditioning device of a so-called heat pump system which acquires comfortable heating of a vehicle interior by preventing or inhibiting frost formation to an outdoor heat exchanger. A controller calculates a maximum heating capability predicted value without frosting QmaxNfst as a target value of a maximum heating capability which can be generated by a radiator 4 in a range in which an outdoor heat exchanger 7 is not frosted, and controls heating by the radiator 4 and heating by a heating medium-air heat exchanger 40 of a heating medium circulating circuit 23 on the basis of the maximum heating capability predicted value without frosting QmaxNfst and a required heating capability Qtgt which is the heating capability required for the radiator 4 to achieve the required heating capability Qtgt without causing frost formation to the outdoor heat exchanger 7.
Abstract:
An air conditioner and a method of controlling the same are provided. The air conditioner includes first and second compressors capable of performing multi-stage compression, a condenser for condensing a refrigerant compressed in the first and second compressors, a refrigerant separation device for separating the refrigerant to be injected to the first or second compressor of the refrigerant condensed in the condenser, injection tubes extending from the refrigerant separation device to the first and second compressors to guide injection of the refrigerant, a main expansion device disposed at an outlet-side of the refrigerant separation device to decompress the refrigerant, an evaporator for evaporating the refrigerant decompressed in the main expansion device, a valve device disposed at an outlet-side of the first compressor to guide the refrigerant compressed in the first compressor to the condenser or the second compressor, and a bypass tube extending from the valve device to an suction-side of the second compressor.
Abstract:
Method and device for defrosting of an evaporator (1) in a heat pump (2) connected to an air handling unit (9), which comprises a controllable heat recovery device (10). The heat pump (2) comprises a refrigerant system (3) with a refrigerant (4), a compressor (5), a condenser (6), a first expansion valve (7) and an evaporator (1). A four-way valve (8) is arranged after the compressor (5) and before the condenser (6), for changing a flow direction of the refrigerant (4) to the evaporator (1) instead of the condenser (6). The heat recovery device (10) recovers energy from first air stream (11) and transfer energy to second air stream (12). When frost formation occurs, the refrigerant temperature is increased and the recovery device (10) is regulated down so that heating of the evaporator (1) is accomplished, both from inside and outside to defrost the evaporator (1).
Abstract:
A refrigeration cycle device includes a flow channel coupling member which constitutes at least one of a branching portion and a joining portion of a third refrigerant passage and a branching portion and a joining portion of a bypass passage. One of three refrigerant ports of the flow channel coupling member is directly connected to one of two refrigerant ports of a first switching device or a second switching device, and a sealing mechanism preventing a refrigerant leakage is provided in a connecting portion between the refrigerant port of the flow channel coupling member and the refrigerant port of the first switching device or the second switching device. The flow channel coupling member is fixed to one of the switching devices at a position different from a position of the sealing mechanism.
Abstract:
A system and method for controlling an economizer circuit is provided. The economizer circuit includes a valve to regulate refrigerant flow between the economizer and the compressor. The valve can be opened to engage the economizer circuit or closed to disengage the economizer circuit based on the output frequency provided to the compressor motor by a variable speed drive and an operating condition of the economizer.
Abstract:
Operation of a transcritical refrigerant vapor compression system is controlled, when operating in a high capacity mode, through control of the refrigerant pressure in the refrigerant heat rejection heat exchanger (40) or the compressor (30) discharge pressure, also referred to herein as the high side pressure, so as to optimize energy efficiency. When operating in unloaded low capacity mode, such as for chilling perishable product during temperature maintenance operation, the high side pressure is controlled so that the system can operate in a continuous running mode.
Abstract:
In a heating mode, a refrigerant circuit is switched in which a refrigerant is decompressed by an ejector to flow into a gas-liquid separator, and a separated gas phase refrigerant is introduced into an intermediate-pressure suction port of a compressor and at the same time a separated liquid phase refrigerant flows to at least a second variable throttle valve, an interior evaporator, and a suction port of the compressor, in this order. In a cooling mode, a refrigerant circuit is switched in which the refrigerant flowing out of the interior condenser is decompressed by a first variable throttle valve through an exterior heat exchanger to flow into the gas-liquid separator, and a separated gas phase refrigerant is introduced into the intermediate-pressure suction port of the compressor, and at the same time a separated liquid phase refrigerant flows to the second variable throttle valve, the interior evaporator, and the suction port of the compressor, in this order.
Abstract:
A flow rate regulation valve is used for a refrigeration cycle device for air conditioning. The flow rate regulation valve is constituted by: an inlet flow rate control valve connected to the inlet side of an inside evaporator and functioning in the refrigeration cycle device as an expansion valve for depressurizing and expanding a refrigerant flowing into the inside evaporator; and an outlet flow rate adjustment valve connected to the outlet side of the inside evaporator and functioning as an evaporation pressure adjustment valve for adjusting evaporation pressure in the inside evaporator to a predetermined target pressure at which frost is not formed. The flow rate regulation valve is characterized in that, when the opening of one of the inlet flow rate control valve and the outlet flow rate adjustment valve increases, the flow rate regulation valve displaces so that the opening of the other decreases.