Abstract:
Methods, systems, and apparatuses for wireless communication are described. A user equipment (UE) may establish a dynamic coverage enhancement (CE) configuration and then autonomously transition from one CE level to another while in idle mode. The network may blindly detect the CE change during a paging procedure. For example, a mobility management entity (MME) may store dynamic CE information, and it may provide the dynamic CE information to base stations when the UE is paged. In some cases, the base stations may autonomously retransmit paging messages at different CE levels based on the dynamic CE information. In other examples, the MME may direct the base station to retransmit at different CE levels.
Abstract:
Techniques are described for wireless communication. One method includes determining, based at least in part on a number of downlink component carriers (CCs) scheduled for a user equipment (UE) during a reporting interval, a number of bits to be included in a physical uplink control channel (PUCCH) acknowledgement/non-acknowledgement (ACK/NAK) payload for the reporting interval; and selecting, based at least in part on the determined number of bits, a format of the PUCCH ACK/NAK payload.
Abstract:
Methods, systems, and devices are described for decreasing user plane latency in a wireless communication system. This may include routing a portion of bearer traffic to or from a UE through a local or serving gateway, or within or between base stations, rather than via the core network. In some examples, techniques for selected internet protocol flow ultra-low latency (SIPFULL) for systems in which users may have subscribed to enhanced services may be employed. The network may, for instance, authorize SIPFULL functionalities for UEs per access point name (APN) based on individual services subscribed by the UE to improve overall quality of service (QoS). In some examples, a UEs latency requirements or SIPFULL authorizations may affect mobility operations.
Abstract:
Techniques are described for preempting resource allocations to one or more UEs in the event that delay sensitive data is received. A resource allocation of a number of symbols may be granted to a first user equipment (UE) for first associated data to be transmitted. Subsequently, data may be received for a second UE that is more delay sensitive than the first data. The resource allocation to the first UE may be preempted, and resources allocated to the second UE for the second data within a variable length transmission time interval (TTI) of the resource allocation to the first UE. UEs may monitor for preemption during transmissions to other UEs in order to receive new resource grants associated with the preempted resource grant. Whether a UE monitors transmissions for preemption may be determined based on a quality or service (QoS) of the UE.
Abstract:
Techniques are described for wireless communication. A first method includes receiving a transmission including a paging group indicator and an indication of a time window. The transmission may be received at a user equipment (UE) over an unlicensed radio frequency spectrum band. The first method may also include monitoring, based on the paging group indicator, the unlicensed radio frequency spectrum band during the time window to receive an asynchronous paging message from a base station. A second method includes transmitting the transmission over the unlicensed radio frequency spectrum band; performing a number of clear channel assessments (CCAs) on the unlicensed radio frequency spectrum band during the time window; and transmitting the paging message over the unlicensed radio frequency spectrum band at a transmission time during the time window. The transmission time may be based on a result of at least one of the CCAs.
Abstract:
A method for determining channel quality estimates of two or more types of subframes, such as clean and unclean subframes, may be applicable to both legacy and newer user equipment. A first base station affects a channel quality measurement by either transmitting dummy signals over designed tones that correspond to a second base station, or by puncturing transmissions during designated tones that correspond to the second base station.
Abstract:
Methods, systems, and devices are described for hierarchical communications and low latency support within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing. In some examples symbols of different duration may be multiplexed such that they different symbol durations coexist.
Abstract:
Certain aspects of the present disclosure provide various mechanisms that allow a user equipment to convey information regarding one or more attributes to a base station during a random access (RA) procedure. The attributes may include, for example a capability of the UE (e.g., to support a particular feature or version of a standard) or a condition of the UE (e.g., if it is currently experiencing an interference condition).
Abstract:
Interference issues between wireless network devices are mitigated. An evolved node B (eNodeB) may experience higher cell load or higher interference when serving user equipment (UEs) that are operating in an cell range extension (CRE) area in which the UEs are strongly affected by aggressor eNodeBs. An eNodeB experiencing higher cell load or serving user equipments (UEs) under higher interference generally requests an interfering/aggressor eNodeB to repartition some of its resources. Repartitioning of resources, however, may have a negative impact on the eNodeB serving CRE area UEs. In one aspect, a new measurement of utilization accounts for CRE status and differentiates between protected and unprotected resources, such as subframes.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.