Abstract:
A method for transmitting channel quality information for a downlink channel. The method according to one embodiment includes receiving, by a User Equipment (UE), configuration information on periodic channel state information (CSI) reporting by higher layer signaling; and determining, by the UE, a channel quality information index at least based on a UE-specific reference signal overhead. The UE-specific reference signal overhead is determined according to a rank value. The method according to the one embodiment further includes transmitting the determined channel quality information index to a base station. The channel quality information index is determined further based on an assumption of no resource element allocated for a Channel Status Information-Reference Signal (CSI-RS).
Abstract:
A method of transmitting a spatial stream for multi user (MU)-multiple input multiple output (MIMO) in a wireless local area network system and a transmitter for performing the method are provided. The method includes transmitting, to a receiver, a management frame including group information to assign or change a position of a plurality of spatial streams corresponding to each of a plurality of groups, and transmitting, to the receiver, a frame including at least one spatial stream, wherein the group information includes a plurality of group indicators and a plurality of spatial stream (SS) indicators, each of the plurality of group indicators indicating whether the receiver is a member of each of the plurality of groups, each of the plurality of SS indicators indicating a position of the plurality of spatial streams corresponding to each of the plurality of groups.
Abstract:
A method is described for transmitting signals at a communication apparatus in a wireless communication system supporting a plurality of component carriers. A physical uplink shared channel (PUSCH) with uplink control information (UCI) and a PUSCH without the UCI are simultaneously transmitted using the plurality of component carriers. A predefined transmission power determination scheme is used to determine the transmission power of the PUSCH with the UCI, and determine the transmission power of the PUSCH without the UCI. If a total transmission power of the PUSCH with the UCI and the PUSCH without the UCI exceeds a value corresponding to a maximum transmission power configured for the communication apparatus, the determined transmission power of the PUSCH without UCI is adjusted while maintaining the determined transmission power of the PUSCH with the UCI.
Abstract:
A method and communication apparatus for transmitting signals in a wireless communication system supporting a plurality of component carriers are described. A physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH) with uplink control information (UCI) and a PUSCH without the UCI are simultaneously transmitted using the plurality of component carriers. If a total transmission power of the PUCCH, the PUSCH with the UCI and the PUSCH without the UCI exceeds a value corresponding to a maximum transmission power, a transmission power determined for the PUSCH without the UCI is reduced while maintaining transmission powers determined for the PUCCH and the PUSCH with the UCI. The PUCCH and the PUSCH with the UCI are transmitted based on the maintained determined transmission powers, and the PUSCH without the UCI is transmitted based on the reduced transmission power.
Abstract:
A method of decoding a backhaul downlink signal of a relay node (RN), the method includes receiving a higher layer signal indicating a maximum transmission rank from a base station (BS), receiving control information through a relay control channel from the BS, and demodulating the control information, wherein the control information is mapped to resource elements which do not overlap with user equipment-specific reference signal resource elements (URS REs) in a control region which is used for the relay control channel transmission of the BS, the URS REs being reserved resource elements for user equipment-specific reference signals (URSs) according to the maximum transmission rank, and wherein the control information is demodulated based on user equipment-specific reference signals transmitted by the BS on one fixed antenna port n, where n is a natural number.
Abstract:
A method for receiving a downlink signal at a downlink reception entity in a wireless communication system, the method includes: receiving downlink control information by demodulating an advanced Physical Downlink Control Channel (PDCCH) of a first resource block (RB) pair of a RB bundle based on a downlink channel estimated by a first Demodulation Reference Signal (DMRS) in the first RB pair; and receiving downlink data by demodulating a Physical Downlink Shared Channel (PDSCH) of a second RB pair of the RB bundle based on a downlink channel estimated by a second DMRS in the second RB pair, wherein the same DMRS pattern is used for the first and the second DMRSs, and wherein antenna ports for the first and the second DMRSs are different.
Abstract:
A method of allocating resources for transmitting a signal in a Multiple-Input Multiple-Output (MIMO) wireless communication system is disclosed. The method includes allocating one or more spatial resources of a plurality of spatial resources corresponding to first Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols to a first transport block, allocating one or more other spatial resources of the plurality of spatial resources corresponding to the first SC-FDMA symbols to a second transport block, and allocating spatial resources corresponding to second SC-FDMA symbols to the first transport block and the second transport block.
Abstract:
A method and station for receiving a data frame in a wireless local area network are provided. The method includes receiving, from a transmitter which has obtained a transmission opportunity (TXOP) for a bandwidth, a first data unit of a plurality of data units during the TXOP, the TXOP indicating an interval of time when the transmitter has a right to exchange frame sequences; and after receiving the first data unit, further receiving, from the transmitter, a second data unit of the plurality of data units during the TXOP, wherein a transmit bandwidth of the second data unit is selected from available bandwidths, wherein the available bandwidths include a first available bandwidth which is same as a transmit bandwidth of the first data unit and a second available bandwidth which is narrower than the transmit bandwidth of the first data unit.
Abstract:
A method of operating a relay station in a wireless communication system is provided. The method includes operating in a first mode comprising a first sub-mode and a second sub-mode, in the first sub-mode a first downlink and a first uplink between a base station and the relay station being simultaneously activated, in the second sub-mode a second downlink and a second uplink between the relay station and a mobile station being simultaneously activated, and operating in a second mode comprising a third sub-mode and a fourth sub-mode, in the third sub-mode the first downlink and the second uplink being simultaneously activated, in the fourth sub-mode the first uplink and the second downlink being simultaneously activated.
Abstract:
A method of performing HARQ performed by a user equipment (UE) is provided. The method includes receiving a bundling indicator which indicates the number of bundled downlink subframes, determining whether at least one bundled downlink subframe is missed by comparing the bundling indicator with the number of detected bundled downlink subframes, generating a representative ACK/NACK signal when no bundled downlink subframe is missed, and transmitting the representative ACK/NACK signal on an uplink channel. Recovery capability is maximized and the packet loss is reduced in such a situation that less number of ACK/NACK signals are fed back than that of downlink packets.