Abstract:
A radiation imaging apparatus includes a hydrophilized portion provided on at least a portion of an outer surface of the radiation imaging apparatus. The hydrophilized portion contains a hydrophilic polymer and an antibacterial agent. A water contact angle of a surface of the hydrophilized portion is equal to or less than 30°.
Abstract:
A first data taking section takes first detection results from a first wireless tag reader which detects the come and go of an electronic cassette into and out of a first service zone, and also takes second detection results from a second wireless tag reader which detects the come and go of an electronic cassette into and out of a second service zone. A first alert controller drives a first speaker to start an alert when the first alert controller determines on the basis of the first detection results that the electronic cassette has gone out the first service zone. After the start of alerting, the first alert controller stops driving the first speaker to interrupt the alert when first alert controller determines that the electronic cassette has come in either the first service zone or the second service zone.
Abstract:
A monocoque-structured housing accommodates a photoelectric conversion panel, a scintillator, and a circuit board in this order from an X-ray incidence side. The scintillator contains cesium iodide and converts X-rays into visible light. The scintillator is vapor-deposited on the photoelectric conversion panel. A plurality of pixels that photoelectrically convert the visible light into charges are formed in the photoelectric conversion panel. A signal processor, which reads out the charge from each pixel and generates image data, is mounted on the circuit board. A gap layer is formed between the scintillator and the circuit board.
Abstract:
A radiographic imaging device includes: a radiation detector including plural pixels, each including a sensor portion and a switching element; a detection unit that detects a radiation irradiation start if an electrical signal caused by charges generated in the sensor portion satisfies a specific irradiation detection condition, and/or if an electrical signal caused by charges generated in a radiation sensor portion that is different from the sensor portion satisfies a specific irradiation detection condition; and a control unit that determines whether or not noise caused by external disturbance has occurred after the detection unit has detected the radiation irradiation start, and if the noise has occurred, that stops a current operation of the radiation detector, and causes the detection unit to perform detection.
Abstract:
Disclosed is a radiographic image detection device which prevents electrostatic charging without causing absorption loss of radiation. The radiographic image detection device has a solid-state detector 20, a wavelength conversion layer 21, and a support 22 arranged in this order from the incidence side of radiation. The wavelength conversion layer 21 converts radiation transmitted through the solid-state detector 20 to visible light. The solid-state detector 20 detects visible light to generate image data. The support 22 has a light reflection layer 22b and an antistatic resin film 22a. The antistatic resin film 22a prevents the support 22 from being electrostatically charged by friction or the like.
Abstract:
In a portable apparatus of a medical system, in a case where an operation unit receives an operation from a physician on the basis of the display contents of a display unit, the medical apparatus controlled as a result of the operation of the operation unit by an operator is defined by an operation control unit, and a signal in response to the operation contents received by the operation unit is transmitted from a transmission unit to the defined medical apparatus.
Abstract:
A radiographic video processing device includes: an acquisition section that acquires gradation signals expressing charges; and a control section that, if capture of a video image formed from plural frames is being performed with a radiation detector, and a number of the pixels, from which charges are combined and read by switching elements included in adjacent pixels of the radiation detector, has been increased, effects control such that, from a frame at a time of the increase up until a predetermined frame, the gradation signals distributed in a higher density range than that for frames subsequent to the predetermined frame are used as image data.
Abstract:
In the case where radiological imaging of a subject to be injected with a contrast agent is performed continuously and a radiation exposure dose of the subject due to the continuous radiological imaging is obtained based on a radiation image signal of each frame detected by a radiation image detector through the continuous radiological imaging, identifying a frame which includes an image signal representing an image of the contrast agent as a contrast agent frame from the radiation image signal of each frame, and correcting the radiation exposure dose based on information of the contrast agent frame and obtaining a radiation exposure dose of the subject for the radiological imaging of the contrast agent frame.
Abstract:
The X-ray image detection apparatus 1 includes: a scintillator panel 10 including a phosphor 200 that is formed on a support 101 and emits fluorescence by irradiation of radiation; and a photodetector 40 that detects the fluorescence emitted by the phosphor as an electric signal, wherein the phosphor 200 includes a columnar section 20 formed by growing crystals of a fluorescent material in a columnar shape, and a non-columnar section 25 provided between the columnar section 20 and the support 101 and has a porosity lower than that of the columnar section 20, and the scintillator panel 10 is disposed at the rear side of the photodetector 40 in a radiation travelling direction, and in the phosphor 200, the non-columnar section 25 is disposed at a side opposite to the photodetector side.
Abstract:
A radiation imaging system that can continuously use sections of a radiation imaging device that has not been damaged and a radiation imaging device are provided. The radiation imaging system comprises: a radiation device that applies radiation; and the radiation imaging device with an imaging panel that captures images of the applied radiation. The radiation imaging device comprises: a failure cause detection unit that detects environmental noise or falls that cause failures in the radiation imaging device; a malfunction diagnostic unit that, in a case where a detected environmental noise value reaches a threshold value or in a case where a fall has been detected, diagnoses a malfunction in the radiation imaging device; and a function limiting unit that applies limits to the radiation imaging device functions that are used continuously, in accordance with the diagnosis results of the malfunction diagnostic unit.