Abstract:
A vent for use in a gaseous fuel supply circuit of a gas turbine is provided. The vent includes an inlet in flow communication with the gaseous fuel supply circuit, a first outlet in flow communication with the gaseous fuel supply circuit and configured to release gaseous fuel at atmospheric pressure, a first valve coupled between the inlet and the first outlet, wherein the first valve includes a second outlet configured to channel the gaseous fuel towards a combustion device. The system also includes a second valve coupled between the inlet and the second outlet, and a control device configured to selectively open and close the first and second valves based on a pressure of the gaseous fuel.
Abstract:
Before being fed into a pipe, particularly a network of pipes for the supply of consumers, gas, preferably natural gas, is continuously conditioned. The pressurized gas is removed from a reservoir, expanded, and heated to a predefined temperature before or after the expansion thereof in that a branched-off partial flow of the fed-out natural gas is mixed with oxygen and the resulting burnable gas is catalytically burned. The fed-out gas is heated with the thermal energy that is produced. For this purpose, a partial exhaust gas flow is branched off from a hot exhaust gas flow released during the catalytic combustion and conducted into a first container together with the cold burnable gas. The burnable gas is mixed with the supplied exhaust gas flow in the first container and is heated, and the mixture composed of the exhaust gas and burnable gas preheated in this way is conducted away from the first container into a second container, where it is subjected to the catalytic combustion, the heat of which is used to heat the fed-out gas to be conditioned to the respectively desired temperature.
Abstract:
A device is provided for controlling a gas supply to a burner, having a draft shut-off device and includes a main gas supply pipe with first and second servovalves therein, which include respective valve seats associated with corresponding shut-off members with diaphragm control for opening the seats in opposition to a resilient return member. A pilot pipe branched from the main pipe supplies a pilot burner. A thermoelectric magnetic safety unit is provided on the main pipe, acting to allow gas to flow towards the pilot burner when the unit is activated. The draft shut-off device includes a corresponding shut-off member movable from and towards a position in which an exhaust pipe is shut off, and a diaphragm-controlled pneumatic actuator of the shut-off member, the diaphragm forming a corresponding control chamber of the shut-off member which is in fluid communication with an auxiliary pipe section branched from the main pipe.
Abstract:
Low pressure off gases such as from dry gas seals may be recompressed to a higher pressure using multiple tandem supersonic ejectors in which upstream ejectors operate at a higher nozzle exit Mach number than down stream ejectors and all ejectors are operated at exit Mach numbers greater than 1.
Abstract:
A liquefied natural gas (LNG) transport vessel for transporting liquefied natural gas (LNG) is disclosed which is capable of storing excess boil off gas BOG until needed for combustion in one or more combustion apparatus on the vessel. A method for managing the delivery of the BOG to the combustion apparatus is also described. The LNG vessel includes at least one insulated LNG storage tank which stores LNG. A first stage LNG receiver receives and stores BOG from the at least one LNG storage tank. A second stage or high pressure BOG storage tank receives compressed BOG from the receiver and stores the BOG as needed for combustion by one or more combustion apparatus of the vessel. A pressure regulator allows BOG gas to be delivered to the combustion apparatus if there is sufficient pressure in the high pressure storage tank to passively deliver the BOG at a predetermined delivery pressure. If the pressure in the high pressure BOG storage tank is insufficient to passively delivery the BOG to combustion apparatus, then a combustion apparatus compressor may be used to actively increase the pressure in BOG such that the BOG is delivered at the necessary delivery pressure. If there is still insufficient BOG in the high pressure BOG storage tank, then it may be necessary to supply supplemental auxiliary fuel to meet the needs of the combustion apparatus.
Abstract:
A method in which a parent hydrocarbon-rich material is processed so as to produce both a carbon-rich solid material that has a higher carbon to hydrogen ratio than that of the parent material and a carbon-deficient combustible gas that has a lower carbon to hydrogen ratio than the parent material. In the process, the material is activated by exposing it to a hot gas stream having elevated levels of one or both of carbon dioxide and water vapor. The combustible gas is combusted to produce heat. At least about 80% of the heat is used in one or more endothermic steps that include drying coal or biomass.
Abstract:
In one embodiment, a combustion system comprises: a fuel supply comprising a fuel having a heating value of less than or equal to about 100 Btu/scf, an inert gas sequestration unit in fluid communication with the fuel supply, and a combustion system located downstream of and in fluid communication with the inert gas sequestration unit and with an oxidant supply. The inert gas sequestration unit comprises a membrane configured to separate N2 from CO and to form a retentate stream having a heating value of greater than or equal to about 110 Btu/scf. In one embodiment, a method for operating a power plant, comprises: passing a fuel stream through an inert gas sequestration unit to remove N2 from the fuel stream and to form a retentate stream, and combusting the retentate stream and an oxidant stream to form a combustion stream.
Abstract:
A flow adjusting valve for combustion gas being provided with an air chamber between its air intake port and its air output port, the air chamber has an inlet connecting with the air intake port, and the air chamber is provided with a valve plug to block between the air intake port and the inlet, the valve plug is always kept at a position to close the inlet of the air chamber; when the electromagnetic device is electrically turned on, it generates a magnetic repulsion force against the permanent magnet to push the valve plug to open the inlet; when a transient pressure of combustion gas is larger than the magnetic repulsion force, the valve plug will close immediately, this can prevent the situation of gas leaking induced by overly large pressure of the gas supplied.
Abstract:
Low pressure off gases such as from dry gas seals may be recompressed to a higher pressure using multiple tandem supersonic ejectors in which upstream ejectors operate at a higher nozzle exit Mach number than down stream ejectors and all ejectors are operated at exit Mach numbers greater than 1.
Abstract:
A premix burner apparatus includes a burner structure and a firing rate control system. The burner structure defines a premix reaction zone configured to communicate with a process chamber. The burner structure further defines a plurality of separate entrances to the reaction zone, and a corresponding plurality of separate premix flow paths, each of which is configured to direct both oxidant and fuel to a respective one of the entrances to the reaction zone. The firing rate control system is operative to control flows of oxidant and fuel along at least one of the flow paths separately from flows of oxidant and fuel along at least one other flow path.