Abstract:
Naphthalimide compounds are used in tissue bonding and protein cross-linking applications. When activated by an activating agent, such as light in the 400-500 nm absorption range, the naphthalimide compounds form chemically-reactive species that cross-link proteins, bond connective tissues together, and bond tissues and other biomaterials together. A naphthalimide-labeled biomolecule, such as a naphthalimide-labeled chitosan, is also capable of bonding tissues without subsequent direct illumination of the contacted tissue area. The naphthalimide compounds may be used in tissue or arterial repair, stabilization of an expanded arterial wall after angioplasty, tethering pharmaceutical agents to tissue surfaces to provide local drug delivery, and for chemically bonding skin care products, sunscreens, and cosmetics to the skin.
Abstract:
Naphthalimide compounds are used in tissue bonding and protein cross-linking applications. When activated by an activating agent, such as light in the 400-500 nm absorption range, the naphthalimide compounds form chemically-reactive species that cross-link proteins, bond connective tissues together, and bond tissues and other biomaterials together. A naphthalimide-labeled biomolecule, such as a naphthalimide-labeled chitosan, is also capable of bonding tissues without subsequent direct illumination of the contacted tissue area. The naphthalimide compounds may be used in tissue or arterial repair, stabilization of an expanded arterial wall after angioplasty, tethering pharmaceutical agents to tissue surfaces to provide local drug delivery, and for chemically bonding skin care products, sunscreens, and cosmetics to the skin.
Abstract:
A method of treating ROP, the method comprising providing a light source emitting light with a wavelength of about 490 nra, exposing an infant's eye to the light, and monitoring the vascularization in the infant's eye.
Abstract:
A system for stimulating a baroreflex of a patient that includes a first light source with a first emitter for emitting a first light, the first emitter at a first location proximate a target tissue having baroreceptor cells, and a second light source including a second emitter and for emitting a second light, the second emitter at a second location proximate the target tissue. The system also includes a control circuit coupled to the first and the second light sources, the control circuit configured to activate the first and the second light sources such that the first light traverses a first pathway to arrive at and penetrate the first portion of the target tissue and the second light-like traverses a second pathway to arrive at and penetrate the second portion of the target tissue, thereby stimulating the baroreceptor cells and activating a baroreflex of the patient.
Abstract:
Naphthalimide compounds are used in tissue bonding and protein cross-linking applications. When activated by an activating agent, such as light in the 400-500 nm absorption range, the naphthalimide compounds form chemically-reactive species that cross-link proteins, bond connective tissues together, and bond tissues and other biomaterials together. A naphthalimide-labeled biomolecule, such as a naphthalimide-labeled chitosan, is also capable of bonding tissues without subsequent direct illumination of the contacted tissue area. The naphthalimide compounds may be used in tissue or arterial repair, stabilization of an expanded arterial wall after angioplasty, tethering pharmaceutical agents to tissue surfaces to provide local drug delivery, and for chemically bonding skin care products, sunscreens, and cosmetics to the skin.
Abstract:
An application for a light source for killing blood pathogens. The light source includes multiple ultraviolet light emitting diodes and a visible-spectrum light emitting diode. A light mixer combines light from the ultraviolet light emitting diodes and the visible-spectrum light emitting diode and focuses a mixed light into a fiber optic for delivery to an intravenous needle. A controller adjusts an amount of current delivered to the ultraviolet light emitting diodes and visible-spectrum light emitting diode. A touch screen is interfaced to the controller for inputting commands and a display is interfaced to the controller for outputting information.
Abstract:
The present invention relates to a method for treating varicose veins, which comprises: pre-treating a target vein segment with a pulsed laser radiation having a wavelength of from 1400 to 2300 nm, thereby causing a substantial diameter reduction of the target vein segment;delivering a sclerosing agent to the pre-treated target vein segment, thereby causing occlusion of the vein. The sclerosing agent is preferably a foam sclerosing agent. The above method in particularly effective also for larger veins, especially veins exceeding 10 mm of diameter, without causing major discomfort to the patients, and which has a very limited risk of side effects, such as those deriving from the injection of relatively large amounts of sclerosing agent or from damages to the vessel endothelium.
Abstract:
A photodynamic therapy apparatus as an estimating apparatus is an apparatus for irradiating a tissue having absorbed photo-sensitive pharmaceutical, the photo-sensitive pharmaceutical absorbing an excitation light and emitting fluorescence, with the excitation light emitted from a tip portion of a laser the catheter, including a connector, a light source, and a light detection unit. The laser the catheter is capable of being attached/detached to/from the connector. The light source outputs the excitation light to the laser the catheter via the connector. The light detection unit detects intensity or a spectrum of the fluorescence, the fluorescence being entered from the laser the catheter via the connector, to estimate whether the tissue has changed because of reaction between the excitation light emitted from the tip portion of the laser the catheter and the photo-sensitive pharmaceutical absorbed in the tissue.
Abstract:
The present invention provides a novel use of far-infrared radiation for improving patency of arteriovenous fistula, decreasing failure of arteriovenous fistula maturation and preventing and/or ameliorating peripheral artery diseases in a subject in need thereof. The radiation has an electromagnetic wave of about 1.5 to 100 μm wavelength, which performs on the subject skin surface for more than 10 minutes.
Abstract:
A system and method for treating hemorrhoidal piles, addressing both cause and symptoms, by endoluminal/interstitial application of energy are disclosed. Inflamed dilated blood vessels (hemorrhoids/piles) are caused due to connective tissue disorder, relative increase in pressure in the superior hemorrhoidal artery and weakening of the vessels' valves. The dilated blood arteries in anal/rectal region are irradiated from inside the pile using (laser) energy for minimal pain/discomfort. The center of the pile is irradiated over a certain diameter, absorbing energy; is denatured causing volume reduction. Central vessels located in the same diameter are obliterated immediately relieving bleeding. In treatment, new connective tissue replaces the coagulated tissue. Closing inflowing arteries further shrinks piles in weeks to three months. Complications are highly diminished. A hand-piece and a fiber with a sharp distal tip are beneficial. Including an imaging system, (ultrasound imaging, optical coherence tomography) and an intelligent system to calculate necessary laser energy parameters help address each pile individually.