Abstract:
The present invention relates to a method and an apparatus for a wireless communication. The communication method by a user equipment, according to an embodiment of the present invention, may include: receiving information on a second communication network base station from a first communication network base station through a first communication unit; and scanning the second communication network base station by using the information on the second communication network base station. According to an embodiment of the present invention, a user equipment can efficiently scan a wireless LAN base station and other heterogeneous network base stations.
Abstract:
A method for configuring a time division duplex (TDD) of a user equipment in a communication system, according to one embodiment of the present invention, comprises the steps of: receiving from a base station a first TDD configuration; receiving from the base station a message including information related to a dynamic TDD configuration; receiving a second TDD configuration according to the received information related to the dynamic TDD configuration; receiving from the base station an uplink grant; and determining whether to apply the first TDD configuration or the second TDD configuration based on a method by which the unlink grant is received. According to one embodiment of the present invention, the advantages of configuring a shorter cycle of the TDD to the user equipment supporting the TDD in a wireless communication system, and rapidly configuring the TDD to the user equipment variably according to a communication situation are provided.
Abstract:
Drive testing for network optimization has been supplemented by the use of information measuring radio conditions collected by mobile terminals (i.e. UEs). To improve the user experience of multicast and broadcast services based on cellular telecommunications networks, such as MBMS and eMBMS, a mechanism is described that adapts UE-based reporting of measurement reports to multicast and broadcast services.
Abstract:
The present disclosure relates to a communication technique and system for integrating a 5G communication system for supporting a higher data rate after a 4G system with IoT technology. Based on 5G communication technology and IoT related technology, this disclosure may be applied to an intelligent service (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related service). Embodiments relate to a method and apparatus for performing an access in an RRC inactive mode in a next generation mobile communication system.
Abstract:
The present disclosure relates to a communication technique for combining, with IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail, and security and safety related services, on the basis of 5G communication technologies and IoT-related technologies. The present disclosure discloses a method and an apparatus for reporting heat generation related information of a terminal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A communication method and system for supporting a high data transmission rate fuse 5G communication systems with IoT technology to transmit data at a high rate after 4G systems. The method for a terminal in a wireless communication system supporting carrier aggregation includes receiving a control message including indication information, the indication information indicating that physical uplink control channel (PUCCH) feedback for at least one secondary cell (SCell) is transmitted on a SCell; identifying whether the SCell is configured to the terminal and is activated; and if the SCell is configured to the terminal and is activated, obtaining Type 2 power headroom information for the SCell.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Disclosed are a method and an apparatus for obtaining channel congestion information of an unlicensed band and performing cell reselection for a terminal, in a next-generation mobile communication system.
Abstract:
The disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate. According to an embodiment, the method comprises initiating a small data transmission (SDT) procedure, in a radio resource control (RRC) inactive state, obtaining a report for a log connection failure or an SDT procedure failure, based on an expiry of an SDT timer, wherein the report for the log connection failure includes information indicating that the report is for SDT and in case that the UE enters an RRC connected state, and transmitting the report to a base station, based on a request for the report from the base station.
Abstract:
A terminal for transmitting a signal in a wireless communication system is provided. The terminal includes a transceiver, and at least one processor configured to start a timer when a Radio Resource Control (RRC) connection establishment procedure or an RRC connection resume procedure is initiated, identify that the timer is expired or that, while the timer is running, an integrity check failure indication is received from a lower layer, determine whether at least one of a first condition or a second condition is met, the first condition including a condition that the terminal has connection failure information available in an information container and a registered Public Land Mobile Network (PLMN) does not correspond to a PLMN identity included in the information container, and the second condition including a condition that a first cell identity of a current cell is not equal to a second cell identity stored in measurement result information about a cell where connection failure happened, in response to determining that at least one of the first condition or the second condition is met, set a count number about connection failure included in the information container to 0, and after determining whether at least one of the first condition or the second condition is met, clear contents included in the information container except for the count number about the connection failure.