Abstract:
The disclosure relates in some aspects to sharing wireless communication resources. For example, a first type of device allocated to use a first resource pool may dynamically use a second resource pool allocated for a second type of device. The first type of device may use an entry criteria to determine whether to use the second resource pool. In some aspects, the entry criteria may specify that resource sharing is permitted if a ratio of resources used by devices of the second type (relative to the total resources in the second resource pool) is less than a threshold. In addition, the first type of device may use an exit criteria to determine whether to stop using the second resource pool. In some aspects, the exit criteria may specify that resource sharing should stop if a ratio of resources used by devices of the second type is greater than a threshold.
Abstract:
A user equipment (UE) may communicate with one or more other UEs using multiple transmissions in a device-to-device (D2D) communications deployment. A number of UEs may be configured with D2D resources, and a transmitting UE may identify available D2D resources from the configured resources. The transmitting UE may identify a resource for a first transmission of a D2D transmission from the available D2D resources, and may identify a second resource for a second transmission of the D2D transmission. The second transmission may be a blind HARQ transmission that may be transmitted to enhance the likelihood that one or more receiving UEs successfully receive the transmission. In some examples, the second resource may be identified based on other available resources within an predetermined time window around the first transmission.
Abstract:
Example methods and apparatuses for managing polling in devices implementing proximity services are presented. For instance, an example method of polling management in a ProSe system is presented, which includes receiving, at a network entity, a polling message from a first UE. In addition, the example method may also include receiving, at the network entity and after receiving the polling message, one or both of a first location report associated with the first UE and a second location report associated with a second UE. Furthermore, the example method may include determining whether to generate a polling response message upon receiving one or both of the first location report and the second location report, wherein the polling response message includes a next polling time for the first UE that is based on a location reporting schedule associated with one or both of the first UE and the second UE.
Abstract:
Methods, systems, and devices are described for managing wireless communications. In one method, a mobile device may determine to transition to a relay status. The relay status may indicate a capability of the mobile device to function as a relay device between at least one other mobile device and a base station. A peer discovery signal that indicates the relay status may then be transmitted. In another method, a mobile device may broadcast an out-of-coverage status indicator in a first peer discovery signal. A second peer discovery signal may be received from at least one other mobile device. The second peer discovery signal may indicate a capability of the at least one other mobile device to function as a relay device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives indication of a transmission scheme for decoding multicast/broadcast data transmitted from a sender, receives a reservation signal for the multicast/broadcast data from the sender, determines whether the receiver is capable of decoding the multicast/broadcast data at the indicated transmission scheme, and transmits a confirmation signal for the multicast/broadcast data to the sender after determining that the receiver is capable of decoding the multicast/broadcast data at the indicated transmission scheme. The apparatus receives the multicast/broadcast data according to the transmission scheme after the confirmation signal is transmitted. Alternatively, the apparatus suppresses transmission of the confirmation signal when it is determined that the receiver is not capable of decoding the multicast/broadcast data at the indicated transmission scheme.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are described. The apparatus wirelessly transmits a reservation signal intended for a plurality of receivers for scheduling a broadcast/multicast data transmission, monitors for a confirmation signal from at least one of the plurality of receivers, wirelessly transmits the broadcast/multicast data transmission to the plurality of receivers if the confirmation signal is received, and suppresses transmission of the broadcast/multicast data to the plurality of receivers if the confirmation signal is not received. In some embodiments, the apparatus further determines at least one of a number of received confirmation signals or a signal strength of a received confirmation signal from the at least one of the plurality of receivers, and suppresses transmission of the broadcast/multicast data based on the determined at least one of the number of received confirmation signals or the signal strength of the received confirmation signal.
Abstract:
Aspects of the present disclosure provide techniques for utilizing road side unit (RSU) that may be stationary units or mobile user equipments (UEs) (e.g., part of a vehicle) for managing scheduling requests from one or more UEs for side-link cellular vehicle-to-everything (CV2X) communication between UEs. To this end, an RSU may determine characteristics associated with the scheduling requests (e.g., traffic type, latency requirements, etc.) to allocate resources in the resource pool to the one or more UEs that comply with the half-duplex constraints.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine, for a device-to-device communication with another UE, a modulation and coding scheme (MCS) configuration, of a set of MCS configurations, based at least in part on at least one of a transmission mode, a packet characteristic, a mobility state of the UE, a capability of the UE, a transmission mode of the device-to-device communication, a received indication from the other UE, or a combination thereof. The UE may transmit, to the other UE, data using an MCS selected based at least in part on the MCS configuration. Numerous other aspects are provided.
Abstract:
A user equipment (UE) may communicate with one or more other UEs using multiple transmissions in a device-to-device (D2D) communications deployment. A number of UEs may be configured with D2D resources, and a transmitting UE may identify available D2D resources from the configured resources. The transmitting UE may identify a resource for a first transmission of a D2D transmission from the available D2D resources, and may identify a second resource for a second transmission of the D2D transmission. The second transmission may be a blind HARQ transmission that may be transmitted to enhance the likelihood that one or more receiving UEs successfully receive the transmission. In some examples, the second resource may be identified based on other available resources within an predetermined time window around the first transmission.
Abstract:
Methods, systems, and devices for wireless communications are described in which two or more UEs of a wireless communications system may establish a sidelink connection. A first UE that is initiating sidelink communications may evaluate whether the sidelink connection can support a quality of service (QoS) for a data flow prior to admitting the data flow. The first UE may evaluate a link quality with one or more other UEs that are to use the data flow on the sidelink connection, evaluate system congestion of time/frequency resources that are available for the sidelink connection, or any combinations thereof, and admit the data flow based on the evaluation. A link quality of the sidelink connection may be determined based on a type of communication associated with the data flow, such as unicast communications with one other UE, multicast communications with multiple other UEs, or broadcast transmissions to multiple UEs.