Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus communicates with a primary serving cell via a first radio, detects a presence of a target cell, sends a first message to the primary serving cell indicating the detected presence of the target cell, receives a command from the primary serving cell to add the target cell as a secondary serving cell, and communicates with at least one of the primary serving cell or the target cell via a second radio to facilitate a handover to the target cell. The first radio and the second radio operate on a same frequency. A downlink control channel of the primary serving cell is not used to schedule a target cell downlink transmission. An uplink control channel to the primary serving cell is not used to provide an acknowledgment of the target cell downlink transmission. The uplink control channel to the primary serving cell is not used to provide channel side information for the target cell downlink transmission.
Abstract:
Access control for an access point (e.g., a cell of the access point) may be based on an access mode associated with the access point. For example, depending on the access mode, access control may involve performing a membership check for the access point. Such a membership check may be performed at a network entity, a source access point, or some other suitable location in a network. In some aspects, access control may involve performing a membership check for an access point in conjunction with a context fetch procedure. Such a procedure may be performed, for example, when an access terminal arrives at the access point after experiencing RLF at another access point.
Abstract:
Certain aspects of the present disclosure provide methods, apparatus, and computer-program products for improving network loading (e.g., by enabling inter-frequency handover and/or traffic offloading between neighboring base stations). In aspects, the proposed methods may include transmitting a beacon signal on a frequency (e.g., carrier frequency) other than the frequency currently used by a base station. The base station may select a cell identity (ID) and transmit one or more beacon signals on the frequency using the selected cell ID. The beacon signal may be used to decide whether or not to perform an inter-frequency handover.
Abstract:
Systems and methodologies are described that facilitate transmitting access point types and/or restricted association parameters using broadcast signals, such as beacons, pilot signals, etc. The type or restricted association information can be indicated by one or more intrinsic aspects of the signal, such as specified parameters. In addition, the type or information can be indicated by one or more extrinsic signal aspects, such as frequency, interval, periodicity, etc. Using this information, a mobile device can determine whether an access point implements restricted association. If so, the mobile device can request an access point or related group identifier before determining whether to establish connection therewith. The identifier can be verified against a list of accessible access points and/or groups to make the determination.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving PCI selection and/or allocation so as to reduce interference from unloaded cells. In one example, a network entity is equipped to determine whether a cell is loaded or unloaded, and allocate a PCI from a common pool of PCIs to the cell when the cell is unloaded. In another example, a network entity is equipped to determine that a cell is to transition between an unloaded state and a loaded state, and use a first PCI from a common PCI pool associated with the cell in the unloaded state and a second PCI associated with the cell in the loaded state. In another example, a communications device is equipped to attempt to access a first cell associated with a first PCI which indicated that the first cell is unloaded.
Abstract:
Multiple data bearers may be configured for a user equipment (UE) for carrier aggregation and may be split among multiple evolved nodeBs (eNBs). The eNBs may be selected to serve the multiple data bearers for the UE based on various criteria such as channel conditions, loading, and the like. Various eNBs may be selected to serve data bearers for UE on a per data bearer basis, so that a particular eNB may be selected to serve each data bearer of the UE. Each data packet for the UE may then be sent via an appropriate data bearer.
Abstract:
Systems, methods and apparatus for facilitating handover control using resource reservation with frequency reuse are provided. In one embodiment, the method can include: transmitting scheduling information for the transmission of information on frequencies corresponding to an unreserved portion of a frequency band. The method can also include transmitting scheduling information for the transmission of information on frequencies corresponding to a reserved portion of the frequency band. A frequency reuse scheme can be employed over the frequencies corresponding to the reserved portion of the frequency band, and the information transmitted on the frequencies corresponding to the reserved portion of the frequency band can be handover signaling information.
Abstract:
A cell cancellation method for improved spectrum sharing is provided. The cell cancellation method includes detecting interference from a cell. The method also includes cancelling a signal from the cell when a physical cell identifier corresponding to the cell is indicated in a cancellation list. An adaptive radio link failure (RLF) trigger method for improved spectrum sharing is disclosed. The RLF trigger method includes detecting interference from a cell. The RLF trigger method also includes adjusting a radio link failure trigger according to a cell identity of an interferer associated with the cell.
Abstract:
Certain aspects of the present disclosure provide methods, apparatus, and computer-program products for improving network loading (e.g., by enabling inter-frequency handover and/or traffic offloading between neighboring base stations). In aspects, the proposed methods may include transmitting a beacon signal on a frequency (e.g., carrier frequency) other than the frequency currently used by a base station. The base station may select a cell identity (ID) and transmit one or more beacon signals on the frequency using the selected cell ID. The beacon signal may be used to decide whether or not to perform an inter-frequency handover.
Abstract:
Methods, devices, and systems for processing uplink broadcast or multicast (“broadcast/multicast”) packets from a user equipment (UE) and distributing the broadcast/multicast packets to other UEs in a network. In some aspects, a UE may receive, from a base station, a downlink packet comprising broadcast or multicast (broadcast/multicast) Ethernet data for a protocol data unit (PDU) session of the UE with a data network (DN) associated with the base station, determining whether the downlink packet corresponds to an uplink packet previously transmitted to the base station by the UE, discarding the downlink packet for the PDU session based on determining that the UE previously transmitted the corresponding uplink packet comprising the broadcast/multicast Ethernet data for the PDU session to the base station, and processing the downlink packet for the PDU session based on determining that the UE did not previously transmit the corresponding uplink packet.