Abstract:
With multiple communication channels available and range extenders, a number of paths may be available for communicating traffic in a wireless network. Traffic on paths in the wireless network may be load balanced to improve channel utilization and/or relieve an overloaded communication channel. To load balance the traffic, a first AP may determine candidate paths between a first AP and a client device, wherein at least one of the candidate paths traverses a second AP. The AP may determine available bandwidths of the candidate paths based, at least in part, on availability of communication channels of the candidate paths. The AP may steer a portion of the wireless network traffic of the client device to a first of the candidate paths based, at least in part, on the available bandwidths.
Abstract:
A network configurator can dynamically configure a device to couple network data between other devices in a wireless network. The devices can include two independent wireless transceivers that can each operate within different frequency bands, such as the 2.4 GHz and 5.0 GHz frequency bands. The configuration of the independent wireless transceivers can be based, at least in part, on device capabilities of the wireless transceivers, channel conditions, and a quality of service associated with the other wireless stations in the wireless network.
Abstract:
A mobile device, such as a smartphone or a tablet computer, can execute functionality for configuring a network device in a communication network and for subsequently controlling the operation of the network device with little manual input. The mobile device can detect sensor information from a network device. The mobile device can determine device configuration information based, at least in part, on decoding the sensor information. The mobile device can provide the device configuration information to an access point of a network. The mobile device can receive communication link information from the access point. The mobile device can provide the communication link information to the network device. The mobile device can receive a message indicating a communication link between the network device and the access point is established.
Abstract:
Systems and methods for identifying an address of a femto node during handoff of an access terminal from a femto node to a macro node. In one embodiment, the femto node assigns a unique identifier to the access terminal. The access terminal passes the unique identifier to the macro node. The macro node partitions the unique identifier to determine the address of the femto node. In another embodiment, the femto node registers its address with a domain name system. The macro node queries the domain name system to obtain the address of the femto node. In another embodiment, the macro node sends the unique identifier to a proxy. The proxy partitions the unique identifier to determine the address of the femto node.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus preserves a state of a user equipment (UE) in an anchor evolved node B (eNB), wherein the anchor eNB is one of a set of connected cells, the UE being in a connected mode. Each cell of the connected set has a corresponding coverage area. The apparatus then maintains the state of the UE in the anchor eNB when the UE moves from a coverage area of the anchor eNB to a coverage area of another one of the cells from the set of connected cells.
Abstract:
Methods and apparatus are provided for configuring mobility or paging parameters of a femto node. A method includes determining capabilities of one or more neighboring access points based in part on signals received from the one or more neighboring access points. The method includes comparing the capabilities to one or more capabilities of the femto node to determine a mobility or paging parameter adjustment. The method includes adjusting one or more mobility or paging parameters based on the mobility or paging parameter adjustment.
Abstract:
A hybrid device can be configured to select a transmit interface to attempt to ensure that each network interface of the hybrid device supports unidirectional traffic. Each of the plurality of network interfaces of the hybrid device can be categorized into one of a set of interface classes based on whether incoming traffic is received at the network interface and/or whether outgoing traffic is transmitted from the network interface. A transmit interface class is selected from the set of interface classes based, at least in part, on a priority level associated with each of the interface classes. One of the network interfaces that belongs to the transmit interface class is selected as a transmit interface for transmitting the frame on the communication network.
Abstract:
Systems and methodologies are described that facilitate multiplexing communications from multiple downstream access points to one or more mobility management entities (MME). In particular, a concentrator component is provided that can establish a single transport layer connection with an MME along with multiple application layer connections over the single transport layer connection for each of multiple downstream access points and/or related mobile devices. The downstream access points and/or mobile devices can provide identifiers, such as tracking identifiers, to the concentrator component, which can utilize the identifiers to track communications with the MME. In this regard, the MME can send paging messages, and the concentrator component can determine downstream access points related to the paging messages based on a stored association with a tracking identifier in the paging message.
Abstract:
Access point functionality of a network device may be disabled, resulting in a coverage hole in a communication network and affecting performance of a client device. Various techniques can be implemented for detecting and minimizing coverage holes. In one embodiment, the network device can selectively establish a communication link with the client device depending on whether the client device is in a coverage hole and depending on whether the client device can detect another access point in the communication network. In some embodiments, the client device can determine that it is in a coverage hole in response to detecting a reserved SSID and can accordingly notify a central coordinator of the communication network. In some embodiments, the central coordinator can identify the network device (with disabled access point functionality) that can eliminate the coverage hole and can cause the network device to enable its access point functionality.
Abstract:
Operations for a WLAN-capable remote control device and a controlled device are disclosed. A first network device (e.g., remote control) may receive a user input for controlling operation of a second network device (e.g., controlled device) of a communication network. The first network device may transition to an active operating state in response to receiving the user input. The first network device may transmit the first user input to the second network device. The first network device may exit the active operating state in response to successfully transmitting the first user input to the second network device.