Abstract:
Techniques for efficiently decoding data at a receiver are disclosed. In one aspect, total available decoding time of the receiver is initially allocated to a plurality of code blocks of a plurality of transport blocks to obtain initial allocated decoding times for the plurality of code blocks. The initial allocated decoding time for each code block may be given by a particular number of decoding iterations to perform for that code block. One or more code blocks of one or more transport blocks are decoded. After decoding the one or more code blocks, a remaining available decoding time is determined and reallocated to undecoded code blocks of the plurality of transport blocks to obtain updated allocated decoding times for the undecoded code blocks. The remaining available decoding time may be reallocated across code blocks of a transport block, across transport blocks, across carriers, across radio access technologies, or a combination thereof.
Abstract:
Aspects of the present disclosure provide methods, apparatus and computer program products for turbo decoder throttling (e.g., in an effort to limit power consumption by a user equipment (UE)). According to an aspect, the UE may identify an error in a received code block (CB) of a transport block (TB). The UE may enter a throttle mode in a decoder at the UE in response to the identified error, wherein the throttle mode determines how one or more subsequent CBs are processed. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a transmitting device may perform a pre-distortion of a signal on a resource allocation for the signal and using discrete Fourier transform (DFT)-domain processing. For example, the transmitting device may perform a first frequency-domain (FD) to time-domain (TD) transform, which may be an example of an inverse DFT (IDFT), on a first set of FD symbols to obtain a first set of TD samples. A size of the first FD to TD transform may be based on the resource allocation for the signal. The transmitting device may perform a crest factor reduction (CFR) function on the first set of TD samples to pre-distort the signal in the TD (e.g., in the IDFT domain), which may enable the transmitting device to avoid out-of-band (OOB) emission or otherwise have greater control over where the pre-distortion contributes energy.
Abstract:
Aspects of the present disclosure provide a self-contained subframe structure for time division duplex (TDD) carriers. Information transmitted on a TDD carrier may be grouped into subframes, and each subframe can provide communications in both directions (e.g., uplink and downlink) to enable such communications without needing further information in another subframe. In one aspect of the disclosure, a single subframe may include scheduling information, data transmission corresponding to the scheduling information, and acknowledgment packets corresponding to the data transmission. Furthermore, the subframe may additionally include a header and/or a trailer to provide certain bi-directional communications functions.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive an indication of a set of frequency domain resources allocated to the UE for communicating data over a wireless channel. The UE may receive an indication of a waveform type associated with the set of frequency domain resources. The waveform type may be based at least in part on a data type of the data, may be used for a defined amount of time, and may be one of a plurality of waveform types that are multiplexed together over different frequency domain resources within a total system bandwidth. The UE may communicate within the set of frequency domain resources according to the indicated waveform type and the data type.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and a network entity may support communication of a compressed channel state information (CSI) feedback. The UE and the network entity may use closed-loop feedback to improve beamforming tracking accuracy. For example, the UE may receive a CSI reference signal (CSI-RS) that is beamformed based on a channel estimate of a sounding reference signal (SRS) or a previous CSI feedback, or both. The UE may transmit a feedback message including compressed CSI that is generated through encoding a measurement of the CSI-RS. The compressed CSI may be generated based on a predicted channel estimate at the network entity, determined based on the channel estimate of the SRS or the previous CSI feedback.
Abstract:
Various aspects of the present disclosure provide for enabling at least one opportunity to transmit mission critical (MiCr) data and at least one opportunity to receive MiCr data in a time division duplex (TDD) subframe during a single transmission time interval (TTI). The single TTI may be no greater than 500 microseconds. The TDD subframe may be a downlink (DL)-centric TDD subframe or an uplink (UL)-centric TDD subframe. How much of the TDD subframe is configured for the at least one opportunity to transmit the MiCr data and how much of the TDD subframe is configured for the at least one opportunity to receive the MiCr data may be adjusted based on one or more characteristics of the MiCr data. The MiCr data may have a low latency requirement, a high priority requirement, and/or a high reliability requirement. Various other aspects are provided throughout the present disclosure.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for distributed scheduling to control interference for small data transactions using grant-less transmissions. A method for wireless communications by wireless node is provided. The method generally includes receiving, from a base station, a list of supported modulation and coding schemes (MCS) and at least one parameter to control interference, determining a data rate and duration for a grant-less transmission based on the list of supported MCS and the at least one parameter, selecting access resources to use for the grant-less transmission from a common pool of resources configured to be shared by a plurality of wireless nodes for grant-less transmissions, and transmitting the grant-less transmission using the selected access resources, at the determined data rate and for the determined duration.
Abstract:
Methods, systems, and devices for wireless communications are described in which multiple operators may perform spectrum sharing using shared radio units (RUs), where the multiple different operators can access a same RU for communications with a user equipment (UE). A shared RU may receive requests for resources from two or more network nodes of two or more different network operators, for wireless resources in a first time period. The RU may determine a first resource allocation for the first time period based on different priorities of the different network operators. A first network operator may have a higher priority than a second or third network operator, and resources may be allocated to the first network operator ahead of the second or third network operators. The RU may transmit the first resource allocation to each of the different network nodes that transmitted requests for resources.
Abstract:
An apparatus may utilize an air interface to transmit and/or receive a transmission during a first TTI that includes a second set of data overriding a first set of data scheduled for transmission during the first TTI. The air interface may further be utilized to transmit and/or receive a transmission after a duration of time that is less than a total time duration of the first TTI that includes a control channel that is at least partially embedded in a data portion of a subframe. The control channel may include an override indicator configured to indicate that the first set of data scheduled for transmission during the first TTI is overridden by the second set of data having the higher priority. The override indicator may be transmitted after the second set of data is transmitted. The one or more additional TTIs may be after the first TTI.