Abstract:
A parking assistance method including: setting a target parking position of a vehicle on the basis of a circumferential situation of the vehicle detected by a circumferential situation detection sensor; determining a communication situation between an operation device configured to receive an operation by an operator outside the vehicle and transmit an instruction signal corresponding to the operation and a communication device mounted on the vehicle and configured to receive the instruction signal; limiting the operation for manually adjusting the target parking position in the operation device depending on the communication situation; transmitting, when the target parking position is adjusted, the instruction signal for moving the target parking position to the communication device; and parking the vehicle by the automatic driving in the target parking position moved depending on the instruction signal received at the communication device.
Abstract:
A parking control method for parking a vehicle on a basis of an operation command includes acquiring an operation command from an operator; detecting an obstacle existing around a vehicle; when detecting the obstacle, notifying the operator of existence of the obstacle and requesting an input of an affirmative determination or a negative determination as to the existence of the obstacle; and when obtaining the affirmative input, parking the vehicle in accordance with a control instruction for moving along a route calculated under a condition that the obstacle exists.
Abstract:
A parking control apparatus includes an input device configured to acquire an operation command acquired from inside or outside of a vehicle and a control device configured to control the vehicle in accordance with the operation command. The control device is configured to determine a communication environment around the vehicle and control the vehicle to park in accordance with a result of the determination.
Abstract:
A method of displaying parking assist information is used in a parking assist apparatus comprising a display and a control device. The control device displays a first parking space in a first display form on the display. The first parking space satisfies a parking condition that is preliminarily defined. When it is estimated that the first parking space will not satisfy the parking condition or a second parking space other than the first parking space will satisfy the parking condition, the control device displays the first parking space in a second display form different from the first display form on the display.
Abstract:
A parking assist method for assisting parking of a subject vehicle uses a parking assist apparatus comprising a controller that guides the subject vehicle to a parking space and a display that displays the parking space. The parking assist method comprises: specifying an available parking space into which the subject vehicle can be parked; displaying the available parking space on the display; when the available parking space is in a parking-unavailable state that represents a state in which the subject vehicle cannot be parked into the available parking space, determining whether or not the parking-unavailable state is canceled; and when the parking-unavailable state is canceled before a first time passes, maintaining a display form of the available parking space on the display.
Abstract:
A three-dimensional object detection device includes an image capturing unit, an image conversion unit, a three-dimensional object detection unit, a light source detection unit and a control unit. The image conversion unit converts a viewpoint of the images obtained by the image capturing unit to create bird's-eye view images. The three-dimensional object detection unit detects a presence of a three-dimensional object within the adjacent lane. The three-dimensional object detection unit determines the presence of the three-dimensional object within the adjacent lane-when the difference waveform information is at a threshold value or higher. The control unit set a threshold value higher so that the three-dimensional object is more difficult to detect in a forward area than rearward area with respect to a line connecting the light source and the image capturing unit when the light source has been detected.
Abstract:
A three-dimensional object detection device includes an image capturing unit, an image conversion unit, a three-dimensional object detection unit, a three-dimensional object assessment unit and a control unit. The image conversion unit converts a viewpoint of the images obtained by the image capturing unit to create bird's-eye view images. The three-dimensional object detection unit detects a presence of a three-dimensional object within the predetermined detection area by vehicle width direction detection processing. The three-dimensional object assessment unit assesses whether the three-dimensional object detected is another vehicle that is present within the predetermined detection area. The control unit suppresses assessment by the three-dimensional object assessment unit that the three-dimensional object is a vehicle when a specified detection position has moved rearward within the detection area in a host vehicle progress direction and arrived at a predetermined position in the host vehicle progress direction within the detection area.
Abstract:
An in-vehicle surrounding environment recognition device includes: a photographic unit that photographs a road surface around a vehicle and acquires a photographic image; an application execution unit that recognizes another vehicle on the basis of the photographic image, and detects a relative speed of the other vehicle with respect to the vehicle; a reflection determination unit that, on the basis of the photographic image, determines upon presence or absence of a reflection of a background object from the road surface; a warning control unit that controls output of a warning signal on the basis of the result of recognition of the other vehicle; and a warning prevention adjustment unit that suppresses output of the warning signal on the basis of the relative speed of the other vehicle, if it has been determined that there is the reflection of the background object from the road surface.
Abstract:
An image processing device includes: an image acquisition unit that obtains a photographic image of an area outside of a vehicle captured and output by a camera; a sun decision unit that calculates a sun position which indicates, at least, a solar elevation and makes a decision as to whether or not the solar elevation is equal to or lower than a predetermined elevation; an opacity detection unit that detects clouding of a lens surface of the camera; a vehicle detection unit that detects another vehicle, different from the vehicle, based upon image information of a first image area in the photographic image; and a control unit that suspends detection of the other vehicle by the vehicle detection unit if the opacity detection unit detects opacity in, at least, the first image area and the sun decision unit decides that the solar elevation is equal to or lower than the predetermined elevation.
Abstract:
A three-dimensional object detection device has an image capturing unit, a first object detection unit, a light source detection unit, a second object detection unit, a degree-of-clouding calculation unit and a controller. The image capturing unit captures images rearward of a vehicle. The first object detection unit detects a presence of a three-dimensional object from the captured images. The second object detection unit detects a presence of a three-dimensional object from a detection result of the light source detection unit. The degree-of-clouding calculation unit calculates a degree of lens clouding from the captured images. The controller assess the object as an adjacent vehicle in an adjacent lane from the degree of lens clouding when the degree of lens clouding is equal to or greater than a predetermined value and from the presence of the object in the captured images when the degree of lens clouding is less than the value.