Abstract:
A fuel delivery system for a gas turbine combustor is provided. The fuel delivery system includes a fuel tube and an attachment assembly. The fuel tube extends from a downstream injector (e.g., a late lean injector) towards a mounting ring of the combustor and is moveably attached to the mounting ring using the attachment assembly. Accordingly, the exemplary fuel delivery system may provide fuel to a downstream injector while accommodating a thermal expansion or contraction of the fuel tube along an axial direction of the combustor.
Abstract:
A support frame for assembling a combustion module for a gas turbine includes a base plate disposed at a bottom end of the support frame and a support plate that is vertically separated from the base plate by one or more vertical support members. The support plate defines an opening that is sized to allow a portion of the combustion module to pass therethrough. A support block extends vertically from the base plate towards the support plate where the support block defines one or more fastener holes for connecting an aft end of a combustion liner of the combustion module to the support block. A central support column extends vertically from the base plate towards the support plate. A horizontal support extends radially outward from the central support column to align the combustion liner with the opening in the support plate.
Abstract:
An air shield for an injector of a combustor includes a first section that extends axially from a first end to a second end, and a channel defined by the air shield. The channel includes at least one inlet proximate to the second end. The at least one inlet is configured to receive a channel airflow that is a portion of a surrounding airflow. The channel is configured to control a distribution of the channel airflow to the injector.
Abstract:
A downstream nozzle for use in a combustor that includes an inner radial wall defining a combustion zone downstream of a primary nozzle and an outer radial wall surrounding the inner radial wall so to form a flow annulus therebetween. The downstream nozzle may include: an injector tube extending between the outer radial wall and the inner radial wall; a first plenum adjacent to the injector tube, and, inboard of the ceiling, a floor disposed between the inner radial wall and the outer radial wall. A feed passage may connect the first plenum to an inlet formed outboard of the outer radial wall and impingement ports may be formed through the floor of the first plenum.
Abstract:
A support frame for assembling a combustion module for a gas turbine includes a base plate disposed at a bottom end of the support frame and a support plate that is vertically separated from the base plate by one or more vertical support members. The support plate defines an opening that is sized to allow a portion of the combustion module to pass therethrough. A support block extends vertically from the base plate towards the support plate where the support block defines one or more fastener holes for connecting an aft end of a combustion liner of the combustion module to the support block. A central support column extends vertically from the base plate towards the support plate. A horizontal support extends radially outward from the central support column to align the combustion liner with the opening in the support plate.
Abstract:
A combustor generally includes a shroud that that defines at least one inlet passage extends circumferentially inside the combustor. A first plate extends radially inside the shroud downstream from the inlet passage. The first plate defines at least one inlet port, at least one outlet port and at least partially defines at least one fuel nozzle passage. The shroud at least partially surrounds a sleeve that extends around the fuel nozzle passage. A tube at least partially surrounded by the sleeve may extend through the fuel nozzle passage. The tube, the sleeve, and the first plate may at least partially define an outlet passage. A first fluid flow path generally extends from the at inlet passage to the inlet port, and a second fluid flow path extends generally from the outlet port to the outlet passage.
Abstract:
A system includes a turbine combustor, which includes a first wall disposed about a combustion chamber, a second wall disposed about the first wall, and a third wall disposed about the second wall. The third wall is configured to combine an exhaust gas with an oxidant and the combustion chamber is configured to combust a mixture of a fuel, the oxidant, and the exhaust gas.
Abstract:
A fuel injector is provided and includes a surface disposed proximate to a flow of a first fluid and a delta wing feature. The surface has upstream and downstream portions defined relative to the flow and defines an injector hole in the downstream portion by which a jet of a second fluid is injectable into the flow. The delta wing feature is disposed on the surface at the upstream portion and is configured to lift an oncoming portion of the flow off the surface and to cause the oncoming portion of the flow to form a pair of counter-rotating vortices that respectively co-rotate with the jet in a cross-flow direction.