Abstract:
One embodiment of the disclosure includes an input module. The input module includes a switch, a rotatable and translatable input member operably connected to the switch and configured to actuate the switch, and an electrical contact operably connected to the switch and in electrical communication with the input member. During operation, the electrical connection between the input member and the electrical contact is maintained during translation and rotation of the input member. The input module may be used with a variety of electronic devices and can be used by a user to provide input to those devices.
Abstract:
A method of manufacturing a housing of an electronic device includes determining a sintering profile configured to produce a selected color at a selected depth within a wall of the housing, sintering a ceramic housing precursor in accordance with the determined sintering profile, thereby forming the housing, and removing material from the housing up to the selected depth.
Abstract:
In one embodiment, acoustic devices are formed on a substrate which is then placed on a first HAF layer, a screen, and a second HAF layer. The layers of HAF each have apertures aligned with acoustic ports of the devices. The substrate is heated such that the first layer of HAF adheres to the substrate and the screen and the second layer of HAF adheres to the screen. The substrate is cut to separate the devices into modules. In other embodiments, a waterproof membrane covering the acoustic port of an acoustic module may be bonded to a screen to form a gap such that it moves under pressure until restrained by the screen. In still other embodiments, back volume covers for acoustic devices are formed by stacking and heating a first HAF layer, a glass-reinforced epoxy laminate layer, a second HAF layer, and a top layer on a substrate.
Abstract:
Embodiments are directed to a watch having a touch-sensitive display and a switch assembly positioned along or within an enclosure. The switch assembly includes a shaft extending into an opening of the enclosure and is configured to receive rotational and translational input. A first sensor, positioned within the enclosure, is configured to detect the rotational input. A second sensor, positioned within the enclosure, is configured to detect the translational input. The watch also includes a touch-sensitive display configured to receive touch input and to depict a graphical output of the watch. The graphical output may be responsive to various inputs, including a touch input provided at the display, the translational input provided at the switch assembly, and the rotational input provided at the switch assembly.
Abstract:
Client devices with wireless functionality, but without wide area network or cellular network functionality, can obtain network access via a host device, where the host device has network access. Such network access can be obtained when a client device of a user is in local range of a host device, e.g., of a different user. An indication of a relative movement between the client device and a host device can be used to establish a network sharing connection.
Abstract:
One embodiment of the present disclosure is directed to a wearable electronic device. The wearable electronic device includes an enclosure having a sidewall with a button aperture defined therethrough, a display connected to the enclosure, a processing element in communication with the display. The device also includes a sensing element in communication with the processing element and an input button at least partially received within the button aperture and in communication with the sensing element, the input button configured to receive two types of user inputs. During operation, the sensing element tracks movement of the input button to determine the two types of user inputs.
Abstract:
A housing for an electronic device, including an aluminum layer enclosing a volume that includes a radio-frequency (RF) antenna is provided. The housing includes a window aligned with the RF antenna; the window including a non-conductive material filling a cavity in the aluminum layer; and a thin aluminum oxide layer adjacent to the aluminum layer and to the non-conductive material; wherein the non-conductive material and the thin aluminum oxide layer form an RF-transparent path through the window. A housing for an electronic device including an integrated RF-antenna is also provided. A method of manufacturing a housing for an electronic device as described above is provided.
Abstract:
In one embodiment, acoustic devices are formed on a substrate which is then placed on a first HAF layer, a screen, and a second HAF layer. The layers of HAF each have apertures aligned with acoustic ports of the devices. The substrate is heated such that the first layer of HAF adheres to the substrate and the screen and the second layer of HAF adheres to the screen. The substrate is cut to separate the devices into modules. In other embodiments, a waterproof membrane covering the acoustic port of an acoustic module may be bonded to a screen to form a gap such that it moves under pressure until restrained by the screen. In still other embodiments, back volume covers for acoustic devices are formed by stacking and heating a first HAF layer, a glass-reinforced epoxy laminate layer, a second HAF layer, and a top layer on a substrate.
Abstract:
An electronic device may have structures such as housing structures, display structures and other device structures that form gaps when assembled. To prevent intrusion of moisture and other environmental contaminants, the gaps may be filled using gap sealing material. The gap sealing material may be a liquid polymer that is applied to the gap in a way that creates an excess protruding portion. Light-based processing techniques and application of solvent may be used to remove excess material. A sealing material such as an adhesive may be applied to gaps to forming a sealing structure. A material may be applied to the adhesive sealing material to cause the sealing material to expand and fill the gap. An undersized gasket may be placed in a gap. The gasket may include materials such as polymer that expands upon application of moisture.
Abstract:
An electronic device includes a surface and a multi-function input device. The multi-function input device is operable in at least a first mode and a second mode. In the first mode, an input portion of the multi-function input device is flush with the surface or recessed in the surface and is operable to receive z axis press input data. In the second mode, the input portion is positioned proud of the surface (i.e., project from the surface) and is operable to receive x axis input data and/or y axis input data. The input portion may also be operable to receive z axis input data in the second mode. In one example, the multi-function input device may have a button mode and a joystick mode.